Ionizing Radiation-Induced Crosslinking in Proteins

  • Osamu Yamamoto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)


A number of reports describe effects of ionizing radiation on proteins both in solid state and in solution. Such studies have been done mainly in relation to inactivation of enzymes (Augenstein, 1962, 1964; Luse, 1964; Dale, 1966; Garrison, 1968). Recently Grossweiner (1976) reviewed photochemical and radiochemical reactions for enzyme inactivation. These reports discuss aggregation, chain cleavage, opening and interchange of disulfide linkages, production and disappearance of sulfhydryl groups, decomposition of amino acid residues, and their negative responses. the diversity of the results presented makes it difficult to generalize about mechanism of radiation-induced transformation. Various factors are involved in the radiation-induced crosslink-formation in proteins.


Human Serum Albumin Disulfide Bond Aromatic Amino Acid Specific Amino Acid Electron Spin Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. E., McNaughton, G. S., and Michael, B. D. (1967). The pulse radiolysis of sulphur compounds Part 1. Cysteamine and cystamine. “The Chemistry of Ionization and Excitation” (G. R. A. Johnson and G. Scholes, eds.), pp. 281–293, Taylor and Francis LTD, London.Google Scholar
  2. Aldrich, J. E. and Cundall, R. B. (1969). The radiation-induced inactivation of lysozyme. Int. J. Radiat. Biol., 16, 343–358.CrossRefGoogle Scholar
  3. Alexander, P., Fox, M., Stacey, K. A., and Rosen, D. (1956). Effects of some direct and indirect effects of ionizing radiations in protein. Nature, 178, 846–849.PubMedCrossRefGoogle Scholar
  4. Alexander, P., Hamilton, L. D. G., and Stacey, K. A. (1960). Irradiation of proteins in the solid state. I. Aggregation and disorganization of secondary structure in bovine serum albumin. Radiat. Res., 12, 510–525.PubMedCrossRefGoogle Scholar
  5. Al-Thannon, A. A., Barton, J. P., Packer, J. E., Sims, R. J., Trum-bore, C. N., and Winchester, R. V. (1974). The radiolysis of aqueous solutions of cysteine in the presence of oxygen. Int. J. Radiat. Phys. Chem., 6, 233–248.CrossRefGoogle Scholar
  6. Al-Thannon, A. A., Peterson, R. M., and Trumbore, C. N.,(1968). Studies in the aqueous radiation chemistry of cysteine. I. Deaerated acidic solutions. J. Rhys. Chem., 72, 2395–2399.CrossRefGoogle Scholar
  7. Armstrong, D. A. and Wilkening, V. G. (1964). Effects of pH in the Y-radiolysis of aqueous solutions of cysteine and methyl mer-captan. Can. J. Chem., 42, 2631–2635.CrossRefGoogle Scholar
  8. Armstrong, R. C. and Charlesby, A. (1967). The role of tryptophan in the inactivation of deoxyribonuclease. Int. J. Radiat. Biol., 12, 523–534.CrossRefGoogle Scholar
  9. Armstrong, R. C. and Swallow, A. J. (1969). Pulse-and gamma-radiolysis of aqueous solutions of tryptophan. Radiat. Res., 40, 563–579.PubMedCrossRefGoogle Scholar
  10. Armstrong, W. A. and Humphreys, W. G. (1967). Amino acid radicals produced chemically in aqueous solutions. Electron spin resonance spectra and relation to radiolysis products. Can. J. Chem., 45, 2589–2597.CrossRefGoogle Scholar
  11. Arnow, L. E. (1935). Physicochemical effects produced by the irradiation of crystalling egg albumin solution with a particles. J. Biol. Chem., 110, 43–59.Google Scholar
  12. Augenstein, L. G. (1958). A proposed mechanism of protein inactivation. “Symposium on Information Theory in Biology” (H. Yockey, ed.), pp. 287–292, Pergamon Press, New York.Google Scholar
  13. Augenstein, L. G. (1962). The effects of ionizing radiation of enzymes. Advan. Enzymol., 24, 359–413.Google Scholar
  14. Augenstein, L. G., Brustad, T., and Mason, R. (1964). The relative roles of ionization and excitation processes in the radiation inactivation of enzymes. “Advances in Radiation Biology” (L. G. Augenstein, R. Mason, and H. Quastler, eds.), Vol. I, pp. 227–266, Academic Press, New York.Google Scholar
  15. Barra, D., Bossa, F., Calabrese, L., Rotilio, G., Roberts, P. B., and Fielden, E. M. (1975). Selective destruction of amino acid residues in irradiated solutions of superoxide dismutase. Biochem. Biophys. Res. Commun., 64, 1303–1309.PubMedCrossRefGoogle Scholar
  16. Barron, E. S. G. and Finkelstein, P. (1952). Studies on the mechanism of action of ionizing radiations. X. Effect of X-rays on some physicochemical properties of proteins. Arch. Biochem. Biophys.; 41, 212–232.PubMedCrossRefGoogle Scholar
  17. Barron, E. S. G. and Johnson, P. (1954). Studies on the mechanism of action of ionizing radiations. XI. Inactivation of yeast alcohol dehydrogenase by X-irradiation. Arch. Biochem. Biophys., 48, 149–153.PubMedCrossRefGoogle Scholar
  18. Baverstock, K., Cundall, R. B., Adams, G. E., and Redpath, J. L. (1974). Selective free radical reactions with proteins and enzymes: The inactivation of a-chymotrypsin. Int. J. Radiat. Biol., 26, 39–46.CrossRefGoogle Scholar
  19. Baxendale, J. H. and Smithies, D. (1959). X-Irradiation of aqueous benzene solutions. J. Chem. Soc., 779–783.Google Scholar
  20. Blombäck, B. (1969). The N-terminal disulphide knot of human fibrinogen. Brit. J. Haemat., 17, 145–157.PubMedCrossRefGoogle Scholar
  21. Bowes, J. H. and Moss, J. A. (1962). The effect of gamma radiation on collagen. Radiat. Res., 16, 211–223.(1962)PubMedCrossRefGoogle Scholar
  22. Braams, R. (1966). Rate constants of hydrated electron reactions with amino acids. Radiat. Res., 27, 319–329.PubMedCrossRefGoogle Scholar
  23. Brdička, R., Spurný, Z., and Fojtík, A. (1963). Effect of the dose intensity on the rate of radio-oxidation of cystine in aqueous solutions. Colin Czech. Chem. Commun., 28, 1491–1498.Google Scholar
  24. Brodskaya, G. A. and Sharpatyi, V. A. (1967a). Radiolysis of phenylalanine aqueous solutions. Zhur. Fiz. Khim., 41, 1108–1113.Google Scholar
  25. Brodskaya, G. A. and Sharpatyi, V. A. (1967b). Radiolysis of aqueous solutions of tyrosine, concentration, and oxygen effect. Zhur. Fiz. Khim., 41, 2850–2856.Google Scholar
  26. Carroll, W. R., Mitchell, E. R., and Callanan, M. J. (1952). Polymerization of serum albumin by X-rays. Arch. Biochem. Biophys. 39, 232–233.PubMedCrossRefGoogle Scholar
  27. Cassel, J. H. (1959). Effects of gamma radiation of collagen. J. Am. Leather Chemists’ Assoc, 54, 432–449.Google Scholar
  28. Chanderkar, L. P., Gurnani, S., and Nadkarni, G. B. (1976). The involvement of aromatic amino acids in biological activity of bovine fibrinogen as assessed by gamma-irradiation. Radiat. Res., 65, 283–291.PubMedCrossRefGoogle Scholar
  29. Copeland, E. S. (1975). Characterization of secondary radical reactions in irradiated ribonuclease. Radiat. Res., 61, 63–75.PubMedCrossRefGoogle Scholar
  30. Dale, W. M. (1966). Irradiation effects of enzyme (in vitro). “Radiation Biology” (A. Zuppinger, ed.), Vol. 1, pp. 214–235, Springer-Verlay, Heiderberg.Google Scholar
  31. Davies, J. V., Ebert, M., and Swallow, A. J. (1965). Reactions of the hydrated electron with glycine and other amino acids and peptides. “Pulse Radiolysis” (M. Ebert, J. P. Keene, A. J. Swallow, and J. H. Baxendale, eds.), pp. 165–170, Academic Press, London and New York.Google Scholar
  32. Delincée, H. and Radola, B. J. (1974a). The effect of γ-irradiation on the change and size properties of horseradish peroxidase. Radiat. Res., 58, 9–24.CrossRefGoogle Scholar
  33. Delincée, H. and Radola, B. J. (1974b). Effect of γ-irradiation on the change and size properties of horseradish peroxidase: Individual isoenzymes. Radiat. Res., 59, 572–584.PubMedCrossRefGoogle Scholar
  34. Delincée, H. and Radola, B. J. (1975). Structural damage of gamma-irradiated ribonuclease revealed by thin-layer isoelectric focussing. Int. J. Radiat. Biol., 28, 565–579.CrossRefGoogle Scholar
  35. Delincée, H., Radola, B. J., and Drawart, F. (1971). Isoelectric properties of gamma-irradiated horseradish peroxidase. Int. J. Radiat. Biol., 19, 93–97.CrossRefGoogle Scholar
  36. Dorfman, L. F., Taub, I. A., and Bühler, R. E. (1962). Pulse radiolysis studies. I. Transient spectra and reaction-rate constants in irradiated aqueous solutions of benzene. J. Chem. Rhys., 36, 3051–3061.CrossRefGoogle Scholar
  37. Drake, M. P., Giffee, J. W., Johnson, D. A., and Koenig, V. L. (1957). Chemical effects of ionizing radiation on protein. I. Effect of γ-radiation on the amino acid content of insulin. J. Am. Chem. Soc., 79, 1395–1401.CrossRefGoogle Scholar
  38. Drew, R. C. and Gordy, W. (1963). Electron spin resonance studies of radiation effects on polyamino acids. Radiat. Res., 18, 552–579.CrossRefGoogle Scholar
  39. El Samahy, A., White, H. L., and Trumbore, C. N. (1964). Scavenging action in γ-irradiated aqueous cysteine solutions. J. Am. Chem. Soc, 86, 3177–3178CrossRefGoogle Scholar
  40. Fernau, A. and Pauli, W. (1915). Über die Einwirkung der durchdringenden Radiumstrahlung auf anorganische und Biokolloide. I. Biochem. Z., 70, 420–441.Google Scholar
  41. Fernau, A. and Spiegel, A. M. (1929). Physikalisch-chemische Untersuchungen bestrahlter Proteine. Bioohem. Z., 204, 14–27.Google Scholar
  42. Fletcher, G. L. and Okada, S. (1961). Radiation-induced formation of dihydroxyphenylalanine from tyrosine and tyrosine-contain-ing peptides in aqueous solution. Radiat. Res., 15, 349–354.PubMedCrossRefGoogle Scholar
  43. Foss, J. G. (1961). Hydrophobic bonding and conformational transitions in lysozyme, ribonuclease and chymotrypsin. Biochim. Biophys. Acta, 47, 569–579.PubMedCrossRefGoogle Scholar
  44. Fricke, H., Leone, C. A., and Landmann, W. (1957). Role of structural degradation in the loss of serological activity of ovalbumin irradiated with gamma-rays. Nature, 180, 1423–1425.PubMedCrossRefGoogle Scholar
  45. Friedberg, F. (1969). Effect of irradiation on some lyophilized proteins. Radiat. Res., 38, 34–42.PubMedCrossRefGoogle Scholar
  46. Friedberg, F. (1972). Covalent binding of amino acid to proteins due to gamma irradiation. Z. Naturforsch., 276, 85.Google Scholar
  47. Friedberg, F. and Hayden, G. A. (1962). The effect of radiation on the amino acid content and the enzymatic activity of ATP-creatine phosphotransferase. Arch. Biochem. Biophys., 98, 485–491.PubMedCrossRefGoogle Scholar
  48. Garrison, W. M. (1968). Radiation chemistry of organo-nitrogen compounds. “Current Topics in Radiation Research” (M. Ebert and A. Howard, eds.), Vol. IV, pp. 43–94, North-Holland Publishing Company, Amsterdam.Google Scholar
  49. Garrison, W. M., Jayko, M. E., Weeks, B. M., and Sokol, H. A. (1967). Chemical evidence for main-chain scission as amajor decomposition mode in the radiolysis of solid peptides. J. Phys. Chem., 71, 1546–1547.PubMedCrossRefGoogle Scholar
  50. Gordy, W. and Shields, H. (1958). Electron spin resonance studies of radiation damage to proteins. Radiat. Res., 9, 611–625.PubMedCrossRefGoogle Scholar
  51. Gordy, W. and Shields, H. (1960). Structure and orientation of free radicals formed by ionizing radiations in certain native proteins. Proc. Nat. Acad. Sci. USA, 46, 1124–1136.PubMedCrossRefGoogle Scholar
  52. Grant, D. W., Mason, S. N., and Link, M. A. (1961). Products of the γ-radiolysis of aqueous cystine solutions. Nature, 192, 352–353.PubMedCrossRefGoogle Scholar
  53. Grossweiner, L. I., Kaluskar, A. G., and Baugher, J. F. (1976). Flash photolysis of enzymes. Int. J. Radiat. Biol., 29, 1–16.CrossRefGoogle Scholar
  54. Hatano, H., Ganno, S., and Ohara, A. (1963). Radiation sensitivity of amino acid in solution and in protein to gamma rays. Bull. Inst. Chem. Res. Kyoto Univ., 41, 61–70.Google Scholar
  55. Haskill, J. S. and Hunt, J. W. (1965). Radiation damage to crystalline ribonuclease; An assay method for damage involved in the refolding of the reduced protein. Biochim. Biophys. Acta, 105, 333–340.Google Scholar
  56. Haskill, J. S. and Hunt, J. W. (1967a). Radiation damage to crystalline ribonuclease; Identification of the physical alterations by gel filtration on Sephadex. Radiat. Res., 31, 327–342.PubMedCrossRefGoogle Scholar
  57. Haskill, J. S. and Hunt, J. W. (1967b). Radiation damage to crystalline ribonuclease; Importance of free radicals in the formation of denatured and aggregated products. Radiat. Res., 32, 606–624.PubMedCrossRefGoogle Scholar
  58. Haskill, J. S. and Hunt, J. W. (1967c). Radiation damage to crystalline ribonuclease; Identification of polypeptide chain breakage in the denatured and aggregated products. Radiat. Res., 32, 827–848.PubMedCrossRefGoogle Scholar
  59. Hay, M. and Zakrzewski, K. (1968). Molecular aggregation and serological specificity of human serum albumin irradiation in solution. Radiat. Res., 34, 396–410.PubMedCrossRefGoogle Scholar
  60. Hayden, G. A. and Friedberg, F. (1964). Effects of gamma radiation on ribonuclease. Radiat. Res., 22, 130–135.PubMedCrossRefGoogle Scholar
  61. Hayden, G. A., Rogers, S. C., and Friedberg, F. (1966). Radiation degradation of polyamino acid in the solid state. Arch. Biochem. Biophys., 113, 247–250.PubMedCrossRefGoogle Scholar
  62. Henriksen, T. (1962). ESR studies on the formation of sulfur radicals in irradiated cysteine, glutathione, and djenkolic acid. J. Chem. Fhys., 36, 1258–1262.CrossRefGoogle Scholar
  63. Henriksen, T. (1966). Effect of the irradiation temperature on the production of free radicals in solid biological compounds exposed to various ionizing radiations. Radiat. Res., 27, 694–709.PubMedCrossRefGoogle Scholar
  64. Henriksen, T., Sanner, T., and Pihl, A. (1963). Secondary processes in proteins irradiated in the dry state.Radiat. Res., 18, 147–162.PubMedCrossRefGoogle Scholar
  65. Horváth, M. and Cságoly, E. (1974a). Disulphide proteins in the binding reaction with radioprotector MEG. Int. J. Radiat. Biol., 25, 87–94.CrossRefGoogle Scholar
  66. Horváth, M. and Cságoly, E. (1974b). Haemoglobin, a sulphhydryl-protein in the binding reaction with radioprotective MEG. Int. J. Radiat. Biol., 25, 351–359.CrossRefGoogle Scholar
  67. Horváth, M. and Holland, J. (1976). Effect of 60Co γ-irradiation on the reaction of mixed disulphides of mercaptoethylguanidine with enzymes of rat-liver cytoplasm. Int. J. Radiat. Biol., 29, 137–144.CrossRefGoogle Scholar
  68. Horváth, M., Fóris, G., Cságoly, E., Sztanyik, L., and Dalos, B. (1972). The binding of radioprotective AET to proteins. Int. J. Radiat. Biol., 21, 263–278.CrossRefGoogle Scholar
  69. Ibraginov, A. P. and Brodskaya, G. A. (1962). Action of X-rays on aqueous solutions of tyrosine and phenylalanine. “Proc. Second All-Union Conf. Radiat. Chem.”, pp. 268–276, Acad. Science, USSR.Google Scholar
  70. Jayko, M. E. and Garrison, W. M. (1958). Formation of bonds in the radiation-induced oxidation of protein in aqueous systems. Nature, 181, 413–414.Google Scholar
  71. Jayson, G. G., Scholes, G., and Weiss, J. (1954). Formation of formylkynurenine by the action of X-rays on tryptophan in aqueous solution. Biochem. J., 57, 386–390.PubMedGoogle Scholar
  72. Jayson, G. G., Stirling, D. A., and Swallow, A. J. (1971). Pulse-and X-radiolysis of 2-mercaptoethanol in aqueous solution. Int. J. Radiat. Biol., 19, 143–156.CrossRefGoogle Scholar
  73. Jung, H. and Schüessler, H. (1966). Zur Strahleninaktivierung von ribonuclease I. Auftrennung der Bestrahlungsprodukte. Z. Naturforsch., B 21, 224–231.Google Scholar
  74. Klassen, N. V., Purdie, J. W., Lynn, K. R., and D’Iorio, M. (1974). Pulse radiolysis of oxytocin and lysine vasopressin. Int. J. Radiat. Biol., 26, 127–132.CrossRefGoogle Scholar
  75. Koenig, V. L. and Perrings, J. D. (1952). Physicochemical effects of radiation. I. Effect of X-rays on fibrinogen as revealed by the ultracentrifuge and viscosity. Arch. Bioohem. Biophys., 38, 105–119.CrossRefGoogle Scholar
  76. Koenig, V. L., Sowinski, R., and Oharenko, L. (1960). Physicochemical effects of radiation. V. Effects of gamma radiation on bovine fibrinogen. Radiat. Res., 13, 432–444.PubMedCrossRefGoogle Scholar
  77. Koloušek, J., Liebster, J., and Babicky, A. (1956). Radiochemische Zersetzung von DL-Methionin. Colin Czech. Chem. Commun., 22, 874–878.Google Scholar
  78. Koloušek, J., Liebster, J., and Babicky, A. (1957). Radiochemical degradation of DL-methionine. Nature, 179, 521–523.Google Scholar
  79. Kopoldová, J., Koloušek, J., Babický, A., and Liebster, J. (1958). Degradation of DL-methionine by radiation. Nature, 182, 1074–1076.Google Scholar
  80. Kopoldová, J., Liebster, J., and Gross, E. (1967). Radiation chemical reactions in aqueous solutions of methionine and its peptides. Radiat. Res., 30, 261–274.PubMedCrossRefGoogle Scholar
  81. Korgaonkar, K. S. and Joshi, S. V. (1968). Gamma irradiation studies with synthetic polyamino acids: Studies with poly-L-tyrosine and poly-DL-alanine using monolayer. Radiat. Res., 35, 213–226.PubMedCrossRefGoogle Scholar
  82. Kumuta, U. S., Gurnani, S. U., and Sahasrabudhe, M. B. (1957). In vitro lability of methionine to ionizing radiations. J. Sci. Ind. Res., 16C, 25–29.Google Scholar
  83. Kumuta, U. S. and Tappel, L. (1962). Decrease of radiation damage to proteins by sulfhydryl protectors. Radiat. Res., 16, 679–685.CrossRefGoogle Scholar
  84. Kurita, Y. and Gordy, W. (1961). Electron spin resonance in a gamma-irradiated single crystal of L-cystine dihydrochloride. J. Chem. Phys., 34, 282–288.CrossRefGoogle Scholar
  85. Lange, R. and Pihl, A. (1960). The mechanism of X-ray inactiva-tion of phosphoglyceraldehyde dehydrogenase. Int. J. Radiat. Biol., 2, 301–308.PubMedCrossRefGoogle Scholar
  86. Lange, R. and Pihl, A. (1961). The radiosensitizing effect of thioglycolic acid, dithioglycolic acid, and homocystine on muscle glyceraldehyde-3-phosphate dehydrogenase. Int. J. Radiat. Biol., 3, 249–258.PubMedCrossRefGoogle Scholar
  87. Leone, C. A. (1960a). Effects of γ-rays on the serologic properties of ovalbumin I. Irradiated lyophilized protein. J. Immunol., 85, 107–111.PubMedGoogle Scholar
  88. Leone, C. A. (1960b). Effects of γ-rays on the serologic properties of ovalbumin II. Fractions from irradiated lyophilized protein. J. Immunol., 85, 112–119.PubMedGoogle Scholar
  89. Leone, C. A. (1960c). Effects of γ-rays on the serologic properties of ovalbumin III. Irradiated solutions. J. Immunol., 85, 268–274.PubMedGoogle Scholar
  90. Liebster, J. and Kopoldová, J. (1964). The radiation chemistry of amino acids. “Advances in Radiation Biology” (L. G. Augen-stein, R. Mason, and H. Quastler, eds.), Vol. 1, pp.157–226., Academic Press, New York and London.Google Scholar
  91. Littman, F. E., Carr, E. M., and Brady, A. P. (1957), The action of atomic hydrogen on aqueous solutions. Radiat. Res., 15, 159–173.Google Scholar
  92. Luzzio, A. J. (1963). The serologic specificity of radiation al-tered-human-serum γ-globulin. J. Immunol., 90, 224–227.PubMedGoogle Scholar
  93. Lynn, K. R. and Louis, D. (1973). The effects of y-radiolysis on solutions of papain. Int. J. Radiat. Biol., 23, 477–485.CrossRefGoogle Scholar
  94. Lynn, K. R. and Raoult, A. P. D. (1973). The effects of γ-irradiation on solutions of catalase, apocatalase and haematin. Int. J. Radiat. Biol., 24, 25–31.CrossRefGoogle Scholar
  95. Lynn, K. R. and Skinner, W. J. (1974). Radiolysis of an alkaline phosphatase. Radiat. Res., 57, 358–363.PubMedCrossRefGoogle Scholar
  96. Lynn, K. R. and Skinner, W. J. (1975). The y-radiolysis of elas-tase. Radiat. Res., 63, 245–252.PubMedCrossRefGoogle Scholar
  97. Marciani, D. J. and Tolbert, B. H. (1972). Analytical studies of fractions from irradiated lysozyme. Biochim. Biophys. Acta, 271, 262–273.Google Scholar
  98. Markakis, P. and Tappel, A. L. (1959); Products of γ-irradiation of cysteine and cystine. J. Am. Chem. Soc., 82, 1613–1617.CrossRefGoogle Scholar
  99. Mee, L. K., Adelstein, S. J., and Stein, G. (1972). Inactivation of ribonuclease by the primary aqueous radicals. Radiat. Res., 52, 588–602.PubMedCrossRefGoogle Scholar
  100. Morton, J. I. (1960). The effects of X-irradiation on the anti-genic-combining properties of some purified human-serum gamma globumins. Int. J. Radiat. Biol., 2, 45–53.PubMedCrossRefGoogle Scholar
  101. Nofre, C., Cier, A., Michou-Saucet, C., and Parnet, J. (1960). Action des radicaux libres hydroxyles sur les acides aminés Compt. Rendu, 251, 811–813.Google Scholar
  102. Nosworthy, J. and Allsopp, C. B. (1956). Effects of X-rays on dilute aqueous solutions of amino acids. J. Colloid Sci., 11, 565–574.CrossRefGoogle Scholar
  103. Ohara, A. (1966). On the radiolysis of methionine in aqueous solution by gamma irradiation. J. Radiat. Res. (Japan), 7, 18–28.PubMedCrossRefGoogle Scholar
  104. Ohtsuki, K., Fukuhara, M., and Sumizu, K. (1970). Chemical and enzymatic properties of Co y-ray irradiated subtilisin BPN’. J. Radiat. Res. (Japan), 11, 113–119.Google Scholar
  105. Ormerod, M. G. and Singh, B. B. (1966). The formation of unpaired electrons on sulphur in irradiated dry proteins as studied by electron spin resonance. Biochim. Biophys. Acta, 120, 413–426.Google Scholar
  106. Owen, T. C., Rodriguez, M., Johnson, B. G., and Rorch, J. A. G. (1968). The radiation chemistry of biochemical disulfides. I. The low-dose X-radiolysis of cystine. J. Am. Chem. Soc., 90, 196–200.PubMedCrossRefGoogle Scholar
  107. Packer, J. E. (1963). The action of60Co-gamma-rays on aqueous solutions of hydrogen sulphide and of cysteine hydrochloride. J. Chem. Soc., 2320–2325.Google Scholar
  108. Packer, J. E. and Winchester, R. V. (1968). Radiolysis of neutral aqueous solutions of cysteine in the presence of oxygen. Chem. Commun., 826–827.Google Scholar
  109. Patten, F. and Gordy, W. (1960). Temperature effects on free ra-dical formation and electron migration in irradiated proteins. Proc. Nat. Acad. Sci. USA, 46, 1137–1144.Google Scholar
  110. Paul, H. and Fischer, H. (1969). Electronenspinresonanz kurzlebiger Radikale aus einigen Aminosäuren und Ami den. Ber. Bunsenges., 73, 972–980.Google Scholar
  111. Paul, H. and Fischer, H. (1971). ESR.-Untersuchung zur Reaktion von Hydroxylrakikalen mit Glycin. Helv. Chim. Acta, 54, 485–491.PubMedCrossRefGoogle Scholar
  112. Paupko, R., Loewenstein, A., and Silver, B. L. (1971). Electron spin resonance study of radicals derived from simple amines and amino acids. J. Am. Chem. Soc., 93, 580–586.CrossRefGoogle Scholar
  113. Pechère, J. F., Dixon, G. H., Maybury, R. H., and Neurath, H. (1958). Cleavage of disulfide bonds in trypsinogen and α-chymotrypsinogen. J. Biol. Chem., 233, 1364–1372.PubMedGoogle Scholar
  114. Peter, G. and Rajewsky, B. (1963). Die indirekte Wirkung von Röntgenstrahlen auf Aminosäuren. II. Bestrahlung von Tryptophan. Z. Naturforsch., B 18, 110–114.Google Scholar
  115. Phung, P. V. and Burton, M. (1957). Radiolysis of aqueous solutions of hydrocarbons benzene, benzene-d 6, cyclohexane. Radiat. Res., 7, 199–216.PubMedCrossRefGoogle Scholar
  116. Pickels, E. G. and Anderson, R. S. (1947). Molecular association of hemocyanin produced by X-rays as observed in the ultracentrifuge. J. Gen. Physiol., 30, 83–99.CrossRefGoogle Scholar
  117. Pihl, A. and Lange, R. (1962). The interaction of oxidized glutathione, cystamine, monosulfoxide, and tetrathionate with-SH groups of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase. J. Biol. Chem., 237, 1356–1362.PubMedGoogle Scholar
  118. Pihl, A., Lange, R., and Eldjarn, L. (1958). Alleged susceptibility of sulphydryl enzymes to ionizing radiation. Nature, 182, 1732–1733.Google Scholar
  119. Platzman, R. and Franck, J. (1958). A physical mechanism for the inactivation of proteins by ionizing radiation. “Symposium on Information Theory in Biology”, pp. 262–275, Pergamon Press, New York.Google Scholar
  120. Radola, B. J. (1968). Radiation-induced hybridization of proteins. Biochim. Biophys. Acta, 160, 469–472.Google Scholar
  121. Ray, D. K. and Hutchinson, F. (1967a). Inactivation of dry ribo-nuclease by ionizing radiation. I. Search for the breakage of sulfur bridges. Biochim. Biophys. Acta, 147, 347–356.PubMedGoogle Scholar
  122. Ray, D. K. and Hutchinson, F. (1967b). Inactivation of dry ribo-nuclease by ionizing radiation. II. A suggested mechanism. Bioohim. Biophys. Acta, 147, 357–368.Google Scholar
  123. Ray, D. K., Hutchinson, F., and Morowitz, H. J. (1960). A connection between S-S bond breakage and inactivation by radiation of a dry enzyme. Nature, 186, 312–313.PubMedCrossRefGoogle Scholar
  124. Rokushika, S. (1974). Effects of gamma irradiation on the function and conformation of ribonuclease A in dilute solution. Radiat. Res., 57, 349–357.PubMedCrossRefGoogle Scholar
  125. Romani, R. J. and Tappel, A. L. (1959). An aerobic irradiation of alcohol dehydrogenase, aldolase and ribonuclease. Arch. Bioehem. Biophys., 79, 323–329.CrossRefGoogle Scholar
  126. Rosen, D. (1959). Intermolecular and intramolecular reactions of human serum albumin after its X-irradiation in aqueous solution. Bioehem. J., 72, 597–602.Google Scholar
  127. Rosen, D., Alexander, P., Goldberg, R., and Hamilton, L. D. G. (1958). A comparison of the effects of X-and α-rays on serum albumin. Radiat. Res., 9, 172–173.Google Scholar
  128. Rosen, D. and Boman, H. G. (1957). Effects of gamma rays on solutions of human serum albumin. II. Chromatographic studies. Arch. Biochem. Biophys., 70, 277–282.PubMedCrossRefGoogle Scholar
  129. Rosen, D., Brohult, S., and Alexander, P. (1957). Effects of gamma rays on solutons of human serum albumin. I. Sedimentation studies. Arch. Biochem. Biophys., 70, 266–276.PubMedCrossRefGoogle Scholar
  130. Rowbottom, J. (1955). The radiolysis of aqueous solution of tyrosine. J. Biol. Chem., 212, 877–885.PubMedGoogle Scholar
  131. Sanner, T. (1970). Intermolecular transfer of radiation energy at 77°K. An ESR study of irradiated mixtures of macromolecules and oxidized penicillamine. Radiat. Res., 44, 13–23.PubMedCrossRefGoogle Scholar
  132. Scholes, G., Shaw, P., Willson, R. L., and Ebert, M. (1965). Pulse radiolysis studies of aqueous solutions of nucleic acid and related substances. “Pulse Radiolysis” (M. Ebert, J. P. Keene, A. J. Swallow and J. H. Baxendale eds.), pp. 151–164, Academic Press, New York and London.Google Scholar
  133. Schüessler, H. (1973). X-ray inactivation of ribonuclease in the presence of EDTA. Int. J. Radiat. Biol., 23, 175–182.CrossRefGoogle Scholar
  134. Schüessler, H. and Denkl, P. (1972). X-ray inactivation of lactate dehydrogenase in dilute solution. Int. J. Radiat. Biol., 21, 435–443.CrossRefGoogle Scholar
  135. Schüessler, H. and Jung, H. (1967). Zur Strahleninaktivierung von Ribonuclease. II. Aminosäure-Zusammensetzung der Bestrahlungsprodukte. Z. Naturforseh., B 22, 614–621.Google Scholar
  136. Schüessler, H., Niemczyk, P., Eichhorn, M., and Pauly, H. (1975). On the radiation-induced aggregates of lactate dehydrogenase. Int. J. Radiat. Biol., 28, 401–408.CrossRefGoogle Scholar
  137. Shapira, R. (1963). Radiation-induced aggregation of bovine pancreatic ribonuclease. Int. J. Radiat. Biol., 7, 537–548.CrossRefGoogle Scholar
  138. Shields, H. and Hamrick, Jr. P. J. (1970). Relative stability of the characteristic sulfur and doublet resonances in X-irra-diated native proteins as measured with ESR. Radiat. Res., 41, 259–267.PubMedCrossRefGoogle Scholar
  139. Shimazu, F., Kumuta, U. S., and Tappel, A. L. (1964). Radiation damage to methionine and its derivatives. Radiat. Res., 22, 276–287.PubMedCrossRefGoogle Scholar
  140. Shimazu, F. and Tappel, A. L. (1964). Comparative radiolability of amino acids of proteins and free amino acids. Radiat. Res., 23, 203–209.PubMedCrossRefGoogle Scholar
  141. Singh, B. B. and Ormerod, M. G. (1965a). Primary radical formation in irradiated proteins. Nature, 206, 1314–1315.PubMedCrossRefGoogle Scholar
  142. Singh, B. B. and Ormerod, M. G. (1965b). The effect of sulphur compounds on free radical fractions and formation in irradiated dry proteins. Biochim. Biophys. Acta, 109, 204–213.PubMedCrossRefGoogle Scholar
  143. Smith, P., Fox, W. M., McGinty, D. J., and Stevens, R. D. (1970). Electron paramagnetic resonance spectroscopic study of radicals derived from glycine, dl-α-alanine, and β-alanine in aqueous solution. Can. J. Chem., 48, 480–491.CrossRefGoogle Scholar
  144. Sowinski, R., Oharenko, L., and Koenig, V. L. (1958). Physicoche-mical effects of radiation. III. Effects of high-speed electrons on bovine fibrinogen as revealed by the ultracentrifuge and viscosity. Radiat. Res., 9, 229–239.PubMedCrossRefGoogle Scholar
  145. Sowinski, R., Oharenko, L., and Koenig, V. L. (1959). Physicoche-mical effects of radiation. IV. Effect of high-speed electrons on human fibrinogen. Radiat. Res., 11, 90–100.PubMedCrossRefGoogle Scholar
  146. Stein, G. and Weiss, J. (1949). Chemical actions of ionizing radiations on aqueous solutions. Part II. The formation of free radicals. The action of X-rays on benzene and benzoic acid. J. Chem. Soc., 3245–3254.Google Scholar
  147. Stevens, C. O., Long, J. L., and Upjohn, D. (1969). Radiation produced aggregation in crystalline preparations of ribonuclease, lysozyme, and trypsin. Proc. Soo. Exptl. Biol. Med., 132, 951–956.Google Scholar
  148. Stevens, C. O., Sauberlich, H. E., and Bergstrom, G. R. (1967). Radiation-produced aggregation and inactivation in egg white lysoizyme. J. Biol. Chem., 242, 1821–1826.PubMedGoogle Scholar
  149. Stratton, K. (1967). Electron spin resonance studies on proton-irradiated ribonuclease and lysozyme. Radiat. Res., supp. 7, 102–115.CrossRefGoogle Scholar
  150. Stratton, K. (1968). Temperature effects on the formation and reactions of free radicals in gamma-irradiated dry enzymes. Radiat. Res., 35, 182–201.PubMedCrossRefGoogle Scholar
  151. Tanabe, R. (1973). Radiation effect of gamma-rays on ct-amylase in aqueous solution. Bull. Inst. Chem. Commun. Kyoto Univ., 51, No. 1, 37–43.Google Scholar
  152. Taniguchi, H., Fukui, K., Ohnishi, S., Hatano, H., Hasegawa, H., and Maruyama, T. (1968). Free-radical intermediates in the reaction of the hydroxyl radical with amino acids. J. Phys. Chem., 72, 1926–1931.PubMedCrossRefGoogle Scholar
  153. Vermeil, C. and Lefort, M. (1957). Production de tyrosine par action des rayons y sur les solutions aqueuses de phénylalanine. Compt. Rendu, 244, 889–891.Google Scholar
  154. Wacker, A., Moustafa, Z. H., and Lochmann, E.-R. (1966). Über die Wirkung von Röntgenstrahlen auf Methionin. Biophysik, 3, 207–212.PubMedCrossRefGoogle Scholar
  155. Wels, P. (1923). Der Einfluβ der Röntgenstrahlen auf Eiweiβkorper. Pflügers Arch., 199, 226–236.CrossRefGoogle Scholar
  156. Wheeler, O. H. and Montalvo, R. (1969). Radiolysis of phenylalanine and tyrosine in aqueous solution. Radiat. Res., 40, 1–10.PubMedCrossRefGoogle Scholar
  157. Whitcher, J. R. (1963). Determination of molecular weights of proteins by gel filtration on sephadex. Anal. Chem., 35, 1950–1953.CrossRefGoogle Scholar
  158. Wilkening, V. G., Lal, M., Arends, M., and Armstrong, D. C. (1967). The γ-radiolysis of cysteine in deaerated IN HC104 solutions. Can. J. Chem., 45, 1209–1214.CrossRefGoogle Scholar
  159. Wilkening, V. G., Lal, M., Arends, M., and Armstrong, D. C. (1968). The cobalt-60 γ radiolysis of cysteine in deaerated aqueous solutions at pH values between 5 and 6. J. Phys. Chem., 72, 185–190.PubMedCrossRefGoogle Scholar
  160. Williams, J. F. and Hunt, J. W. (1963). Molecular lesions produced in ribonuclease by gamma-rays. Nature, 200, 779–781.PubMedCrossRefGoogle Scholar
  161. Winstead, J. A. and Reece, T. C. (1970). Effects of gamma radiation on the chemical and physical properties of lactate dehydrogenase. Radiat. Res., 41, 125–134.PubMedCrossRefGoogle Scholar
  162. Wu, J.-T. and Kuntz, R. R. (1975). The reactions of hydrogen atoms in aqueous solutions: Effect of pH on reactions with cysteine and penicillamine. Radiat. Res., 64, 662–666.PubMedCrossRefGoogle Scholar
  163. Yallow, R. S. (1959). Production of sulfhydryl groups as a result of the indirect or direct effect of ionizing radiation. “1st Proc. Natl. Biophys. Conf.”, p. 169, Yale University Press, New Haven.Google Scholar
  164. Yamamoto, O. (1967). Biochemical studies of radiation damage. I. Inactivation of the pH 5 fraction in amino acyl sRNA synthesis in vitro and the binding of amino acids with protein and nucleic acid by gamma-ray irradiation. Int. J. Radiat. Biol., 12, 467–476.CrossRefGoogle Scholar
  165. Yamamoto, O. (1972a). Radiation-induced binding of cysteine and cystine with aromatic amino acids or serum albumin in aqueous solution. Int. J. Radiat. Rhys. Chem., 4, 227–236.CrossRefGoogle Scholar
  166. Yamamoto, O. (1972b). Radiation-induced binding of methionine with serum albumin, tryptophan or phenylalanine in aqueous solution. Int. J. Radiat. Phys. Chem., 4, 335–345.CrossRefGoogle Scholar
  167. Yamamoto, O. (1973a). Radiation-induced binding of nucleic acid constitutents with protein constitutents and with each other. Int. J. Radiat. Rhys. Chem., 5, 213–229.CrossRefGoogle Scholar
  168. Yamamoto, O. (1973b). Radiation-induced binding of phenylalanine, tryptophan and histidine mutually and with albumin. Radiat. Res., 54, 398–410.PubMedCrossRefGoogle Scholar
  169. Yamamoto, O. (1975). Radiation-induced binding of some protein and nucleic acid constitutents with macromolecular components in cell systems. Radiat. Res., 61, 261–273.PubMedCrossRefGoogle Scholar
  170. Yamamoto, O. (1976). Ionizing radiation-induced DNA-protein cross-linking. “Aging, Carcinogenesis, and Radiation Biology” (K. C. Smith ed.), pp. 165–192, Prenum Publishing Corporation, New York.Google Scholar
  171. Yamamoto, O. and Okuda, A. (1975). Radiation-induced binding of OH-substituted aromatic amino acids, tyrosine and dopa, mutually and with albumin in aqueous solution. Radiat. Res., 61, 251–260.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Osamu Yamamoto
    • 1
  1. 1.Research Institute for Nuclear Medicine and BiologyHiroshima UniversityHiroshimaJapan

Personalised recommendations