Skip to main content

Protein Thiol-Disulfide Interchange and Interfacing with Biological Systems

  • Chapter
Book cover Protein Crosslinking

Abstract

Disulfide-containing proteins offer unique advantages for mechanistic studies of the formation of native three-dimensional structure from unordered, reduced precursors. The main advantage is that covalent intermediates are formed; by characterizing these intermediates, one obtains substantial information about the reaction pathway. Thiol- disulfide interchange is a major component of most oxidative mechanisms carrying thiol to disulfide; thus, it required some attention in its own right. Anfinsen’s descriptions of a “shuffle-ase” enzyme led us to examine the rates of the uncatalyzed exchange under physiologically plausible conditions. Somewhat surprisingly, we found that the rates for formation of several native proteins in uncatalyzed systems containing GSSG and GSH are as great as with the “shuffle-ase” enzyme, suggesting that a substantial portion of biological thiol oxidations proceed by uncatalyzed exchange. While thiol-disulfide exchange of course results in no net change in the oxidation level of a system, catalytic linkage of thiol or disulfide to other redox systems provides a mechanism for achieving net changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, A. K., Schaffer, S. W. and Wetlaufer, D. B. (1975). Non-enzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by gluathione oxido-reduction buffers. J. Biol. Chem. 250, 8477–82.

    PubMed  CAS  Google Scholar 

  • Anderson, W. L. and Wetlaufer, D. B. (1976). The folding pathway of reduced lysozyme. J. Biol. Chem. 251, 3147–53.

    PubMed  CAS  Google Scholar 

  • Anfinsen, C. B. (1967). The formation of the tertiary structure of proteins. The Harvey Lectures 61, 95–116.

    CAS  Google Scholar 

  • Bernheim, F. and Bernheim, M. L. C. (1938). The effects of various metals and metal complexes on the oxidation of sulfhydryl groups. Cold Spring Harbor Sympos. on Quant. Biol. 7, 174–183.

    Article  Google Scholar 

  • Birkett, D. J. (1973). Mechanism of inactivation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase by ethacrynic acid. Mol. Pharmacol. 9, 209–218.

    PubMed  CAS  Google Scholar 

  • Black, S. and Colman, R. F. (1963). The biochemistry of sulfur-containing compounds. Ann. Rev. Biochem. 32, 399–418.

    Article  PubMed  CAS  Google Scholar 

  • Bloksma, A. H. (1971) in Pomeranz, Y. ed. “Wheat Chemistry and Technology.” Amer. Assn. of Cereal Chemists, St. Paul, 1971, pp. 523–584.

    Google Scholar 

  • Bradshaw, R. A., Kanarek, L. and Hill, R. L. (1967). The preparation, properties, and reactivation of the mixed disulfide derivative of egg white lysozyme and L-crystine. J. Biol. Chem. 242, 3789–3798.

    PubMed  CAS  Google Scholar 

  • Creighton, T. E. (1975). The two-disulfide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J. Mol. Biol. 95, 167–99.

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo, F. and Molea, G. (1967). Relative levels of the disulfide-interchange enzyme in the microsomes of bovine tissues. Biochem. Biophys. Acta 146, 593–595.

    CAS  Google Scholar 

  • Eldjarn, L. and Pihl, A. (1957). On the mode of action of X-ray protective agents II. The interaction between biologically important thiols and disulfides. J. Biol. Chem. 225, 499–510.

    PubMed  CAS  Google Scholar 

  • Eldjarn, L. and Pihl, A. (1957). On the mode of action of X-ray protective agents III. The enzymatic reduction of disulfides. J. Biol. Chem. 227, 339–345.

    PubMed  Google Scholar 

  • Epstein, C. J. (1970) in Anfinsen, C. B. ed. “Aspects of Protein Biosynthesis.” Part A, Acad. Press, N.Y. pp. 367–431.

    Google Scholar 

  • Ernest, M. J. and Kim, K. (1973). Regulation of rat liver glycogen synthetase; reversible inactivation of glycogen synthetase D by sulfhydryl-disulfide exchange. J. Biol. Chem. 248, 1550–1555.

    PubMed  CAS  Google Scholar 

  • Fahey, R. C., Brody, S. and Mikolajczyk, S. D. (1975). Change in the glutathione thiol-disulfide status of Neurospora crassa conidia during germination and aging. J. Bacteriol. 121, 144–51.

    PubMed  CAS  Google Scholar 

  • Frankfater, A. and Fridovich, I. (1970). The purification and properties of oxidized derivatives of L-histidine ammonia-lyase. Biochem. Biophys. Acta 206, 457–472.

    PubMed  CAS  Google Scholar 

  • Givol, D., DeLorenzo, F., Goldberger, R. F., and Anfinsen, C. B. (1965). Disulfide interchange and the three dimensional structure of proteins. Proc. Nat’1 Acad. Sci. U.S. 53, 676–684.

    Article  CAS  Google Scholar 

  • Givol, D., Goldberger, R. F., and Anfinsen, C. B. (1963). Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J. Biol. Chem. 239, 3114–3116.

    Google Scholar 

  • Goldberger, R. F., Epstein, C. J. and Anfinsen, C. B. (1964). Purification and properties of a microsomal enzyme, system catalyzing the reactivation of reduced ribonuclease and lysozyme. J. Biol. Chem. 239, 1406–1410.

    PubMed  CAS  Google Scholar 

  • Gregory, E. M. and Fridovich, I. (1973). Oxygen toxicity and superoxide dismutase. J. Bacteriol. 114, 1193–1197.

    PubMed  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione S-transferases; the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–39.

    PubMed  CAS  Google Scholar 

  • Isaacs, J. T. (1976). Glutathione systems and the control of the protein SS/SH ratio. Fed. Proc. 35, Abstract No. 605.

    Google Scholar 

  • Jocelyn, P. C. (1967). The standard redox potential of cysteine-cystine from the thiol-disulfide exchange reaction with glutathione and lipoic acid. Eur. J. Biochem. 2, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn, P. C. (1972). Biochemistry of the SH group. Acad. Press, London, p. 10.

    Google Scholar 

  • Lamfrom, H. and Nielsen, S. O. (1958). Mercaptolysis of cystine— synthesis of an asmymetric disulfide containing half-cystine. Compt. Rend. Trav. du Lab. Carlsberg, Ser. Chim. 30, 349–359.

    CAS  Google Scholar 

  • Lee, J. H. (1956). The influence of copper deficiency on the fleece of British breeds of sheep. J. Agr. Sci. 47, 218–24.

    Article  CAS  Google Scholar 

  • Liener, I. E. and Hogle, J. (1973). Reduction and reactivation of the Bowman-Birk soybean inhibitor. Canad. J. Biochem. 51, 1014–1020.

    Article  Google Scholar 

  • Mills, G. C. (1960). Glutathione peroxidase and the destruction of hydrogen peroxide in animal tissues. Arch. Biochem. Biophys. 86, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Mize, C. E. Langdon, R. and Thompson, T. E. (1962). Hepatic gutathione reductase II. Physical properties and mechanism of action. J. Biol. Chem. 237, 1596–1600.

    PubMed  CAS  Google Scholar 

  • Nowak T. and Hirnes, R. H. (1971). Formyltetrahydrofolate synthetase; the role of the sulfhydryl groups. J. Biol. Chem. 246, 1285–1293.

    PubMed  CAS  Google Scholar 

  • Peterson, J. G. L. and Dorrington, K. J. (1974). An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G. J. Biol. Chem. 249, 5633–5641.

    Google Scholar 

  • Pontremoli, S. and Horecker, B. L. (1970). Current topics in cellular regulation. Acad. Press, N.Y., Vol. 2, 188–195.

    Google Scholar 

  • Saxena, V. P. and Wetlaufer, D. B. (1970). Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry 9, 5015–5023.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, N. K. and Light, A. (1975). Refolding of reduced, denatured trypsinogen and trypsin immobilized on agarose beads. J. Biol. Chem. 250, 8624–8629.

    PubMed  CAS  Google Scholar 

  • Sumegi, J., Sanner, T. and Pihl, A. (1971). Involvement of Highly reactive sulfhydryl groups in the action of RNA polymerase from E. Coli. FEBS Letters 16, 125.

    Article  PubMed  CAS  Google Scholar 

  • Teale, J. M. and Benjamin, D. C. (1976). Antibody as an immunological probe for studying the refolding of bovine serum albumin. I. The catalysis of reoxidation of reduced bovine serum albumin by glutathione and a disulfide interchange enzyme. II. Evidence for the independent refolding of the domains of the molecule. J. Biol. Chem. 251, 4603–4608, 4609-4615.

    PubMed  CAS  Google Scholar 

  • Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Bioch. 27, 502–522.

    Article  CAS  Google Scholar 

  • Wang, S. and Volini, M. (1968). Studies on the active side of rhodanase. J. Biol. Chem. 243, 5465–5470.

    PubMed  CAS  Google Scholar 

  • Wetlaufer, D. B., Johnson, E. R. and Clauss, L. M. (1974) in Osserman, E., Beychok, S. and Canfield R. eds. Lysozyme. Acad. Press, N.Y., pp. 269–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Wetlaufer, D.B. et al. (1977). Protein Thiol-Disulfide Interchange and Interfacing with Biological Systems. In: Friedman, M. (eds) Protein Crosslinking. Advances in Experimental Medicine and Biology, vol 86A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3282-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3282-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3284-8

  • Online ISBN: 978-1-4684-3282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics