Comparison of Wool Reactions with Selected Mono- and Bifunctional Reagents

  • N. H. Koenig
  • Mendel Friedman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)


The molecular structure of wool is discussed in relation to chemical reactivity and the role of disulfide crosslinks. Ideal characteristics of an effective medium (e. g. dimethylformamide) for modifying wool include the ability to penetrate and swell wool without interfering with reagents used. The extent of reaction of wool or reduced wool is compared for mono-and bifunctional activated vinyl compounds, isocyanates, acid chlorides, acid anhydrides, sulfonyl chlorides, and alkyl halides. The degree of crosslinking is assessed by solubility, supercontraction, and tensile tests. Optical and electron scanning microscopy can give evidence of external polymer deposition in contrast to internal chemical modification. Effects of crosslinking by bifunctional reagents are related to changes in mechanical, chemical, and biological (moth-resisting) properties of the modified wool.


Disulfide Bond Acid Chloride Wool Fiber Peracetic Acid Sulfonyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, P., Fox, M., Stacey, K. A. and Smith, F. L. (1952). The reactivity of radiomime tic compounds. I. Crosslinking of proteins. Biochem. J., 52, 177–184.PubMedGoogle Scholar
  2. Alexander, P., Hudson, R. F. and Earland, C. (1963). “Wool: Its Chemistry and Physics,” Chapman and Hall, London.Google Scholar
  3. Asquith, R. S. and Puri, A. K. (1970). The formation of mixed disulfides by the action of thioglycollic acid on wool cystine and its relationship to wool setting. Text. Res. J., 40, 273–280.CrossRefGoogle Scholar
  4. Bikales, N. M., Black, J. J. and Rapoport, L. (1957). The cyanoethylation of wool. Text. Res. J., 27, 80–81.CrossRefGoogle Scholar
  5. Bradbury, J. H. (1973). Structure and chemistry of keratin fibers. Adv. Prot. Chem., 27, 111–211.CrossRefGoogle Scholar
  6. Bradbury, J. H. (1975). The morphology and chemical structure of wool, IUPAC International Symposiun on Macromolecules, Jerusalem, Israel, (July 13–18) Abstracts, p. 49–50.Google Scholar
  7. Caldwell, J. B., Leach, S. J. and Milligan, B. (1965). The mechanism of setting and the release of set in water. Text. Res. J., 35, 245–251.CrossRefGoogle Scholar
  8. Caldwell, J. B., Leach, S. J. and Milligan, B. (1966). Solubility as a criterion of crosslinking in wool. Text. Res. J., 36, 1091–1095.CrossRefGoogle Scholar
  9. Caldwell, J. B. and Milligan, B. (1970). The estimation of crosslinking in wool from the extent of swelling in formic acid. J. Text. Inst., 61, 588–596.CrossRefGoogle Scholar
  10. Caldwell, J. B., Milligan, B. and Roxburgh, C. M. (1973). The sites of reaction of phenyl isocyanate with wool. J. Text. Inst., 64, 461–467.CrossRefGoogle Scholar
  11. Crewther, W. G. (1965). Stress-strain characteristics of animal fibers after reduction and alkylation. Text. Res. J., 35, 867–877.CrossRefGoogle Scholar
  12. Crewther, W. G., Dowling, L. M., Inglis, A. S. and Maclaren, J. A. (1967). The formation of various cross linkages in wool and their effect on the supercontraction properties of the fibers. Text. Res. J., 37, 736–745.CrossRefGoogle Scholar
  13. Dobb, M. G., Johnston, F. R., Nott, J. A., Oster, L., Sikorski, J. and Simpson, W. S. (1961). Morphology of the cuticle layer in wool fibers and other animal hairs. J. Text. Inst., 51, T153-T170.Google Scholar
  14. Farnworth, A. J. (1955). The reaction between wool and phenyl isocyanate. Biochem. J., 59, 529–533.PubMedGoogle Scholar
  15. Feughelman, M. (1966). Sulfhydryl-disulfide interchange and the stability of keratin structure. Nature, 211, 1259–1260.CrossRefGoogle Scholar
  16. Fraenkel-Conrat, H., Cooper, M. and Olcott, H. S. (1945). Action of aromatic isocyanates on proteins. J. Am. Chem. Soc., 67, 314–319.CrossRefGoogle Scholar
  17. Friedman, M. (1967). Solvent effects in reaction of amino groups in amino acids, peptides, and proteins with α, β-unsaturated compounds. J. Amer. Chem. Soc., 89, 4709–4713.CrossRefGoogle Scholar
  18. Friedman, M. (1968). Solvent effects in reactions of protein functional groups. Quart. Rept. Sulfur Chem., 2, 124–144.Google Scholar
  19. Friedman, M. (1973). “Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins,” Pergamon Press, Oxford, England and Elsmford, New York.Google Scholar
  20. Friedman, M. (1977). Flame-resistant wool and wool blends. In “Flame-Retardant Polymeric Materials,” Vol. 2, M. Lewin, S. M. Atlas and E. M. Pearce (Editors), Plenum Press, New York.Google Scholar
  21. Friedman, M., Harrison, C. S., Ward, W. H. and Lundgren, H. P. (1973). Sorption behaviour of mercuric and methyl-mercuric salts on wool. J. Appl. Polym. Sci., 17, 377–390.CrossRefGoogle Scholar
  22. Friedman, M. and Koenig, N. H. (1971). Effect of dimethyl sulfoxide on chemical and physical properties of wool. Text. Res. J., 40, 605–609.CrossRefGoogle Scholar
  23. Friedman, M. and Masri, M. S. (1974). Interaction of mercury compounds with wool and related biopolymers. In “Protein-Metal Interactions,” M. Friedman (Editor), Plenum Press, New York, Vol. 48, pp. 505–550.Google Scholar
  24. Friedman, M. and Noma, A. T. (1970). Cystine content of wool. Text. Res. J., 40, 1073–1078.CrossRefGoogle Scholar
  25. Friedman, M. and Tillin, S. (1970). Flame-resistant wool. Text. Res. J., 40., 1045–1047.Google Scholar
  26. Friedman, M. and Tillin, S. (1974). Partly reduced alkylated wool. Text. Res. J., 44, 578–580.CrossRefGoogle Scholar
  27. Friedman, M. and Wall, J. S. (1966). Additive linear free-energy relationships in reaction kinetics of amino groups with α, β-unsaturated compounds. J. Org. Chem., 31, 2888–2894.CrossRefGoogle Scholar
  28. Geiger, W. B., Kobayashi, F. F. and Harris, M. (1942). Chemically modified wools of enhanced stability. J. Res. Natl. Bur. Standards, 29, 381–389.Google Scholar
  29. Happich, W. F., Windus, W. and Naghski, J. (1965). Stabilization of wool by glutaraldehyde. Text. Res. J., 35, 850–852.CrossRefGoogle Scholar
  30. Harris, M. and Brown, A. E. (1947). New developments in the chemical modification of wool. Amer. Dyestuff Reporter, 36, 316–319Google Scholar
  31. Harris, M. and Smith, A. L. (1936). Oxidation of wool: alkali solubility test for determining the extent of oxidation. J. Res. Natl. Bur. Standards, 17, 577–583.Google Scholar
  32. Hinton, E. H., Jr. (1974). A survey of critique of the literature on crosslinking agents and mechanisms as related to wool keratin. Text. Res. J., 44, 233–292.CrossRefGoogle Scholar
  33. Holt, L. A. and Milligan, B. (1970). The introduction of amide and ester crosslinks into wool. J. Text. Inst., 61, 597–603.CrossRefGoogle Scholar
  34. Koenig, N. H. (1961). Isocyanate modification of wool in dimethyl sulfoxide. Text. Res. J., 31, 592–596.CrossRefGoogle Scholar
  35. Koenig, N. H. (1962). Modification of wool in dimethylforma-mide with mono-and diisocyanates. Text. Res. J., 32, 117–122.CrossRefGoogle Scholar
  36. Koenig, N. H. (1965). Wool modification with acid anhydrides in dimethylformamide. Text. Res. J., 35, 708–715.CrossRefGoogle Scholar
  37. Koenig, N. H. (1976). Chemical modification of wool in aprotic swelling media. J. App. Polymer Sci., 120, in press.Google Scholar
  38. Koenig, N. H. and Crass, R. A. (1975). Acid chloride modification of wool. Text. Res. J., 45, 178–182.CrossRefGoogle Scholar
  39. Koenig, N. H. and Friedman, M. (1972). Surface modification of wool and other fibrous materials by 4-vinylpyridine and zinc chloride. Text. Res. J., 42, 319–320.CrossRefGoogle Scholar
  40. Koenig, N. H. and Friedman, M. (1976). Properties of wool treated with sulfonyl chlorides. 172nd Meeting of the American Chemical Society, San Francisco, California, August 31-September 3, Abstracts, p. CELL 77.Google Scholar
  41. Koenig, N. H. and Friedman, M. (1977). Combined application of reactive compounds in nonaqueous swelling solvents for flame-and shrink-resistant wool. Text. Res. J., 47, 139–141.Google Scholar
  42. Koenig, N. H., Muir, M. W. and Friedman, M. (1973). Wool modification by activated vinyl compounds. Text. Res. J., 43, 682–688.CrossRefGoogle Scholar
  43. Lundgren, H. P. and Ward, W. H. (1962). Levels of molecular organization in α-keratins. Arch. Biochem. Biophys., Suppl. 1, 78–111.Google Scholar
  44. Maclaren, J. A. (1971). Quantitative reduction and alkylation of wool. Text. Res. J., 41, 713.Google Scholar
  45. McPhee, J. R. (1958). The reaction of formaldehyde with wool and its effect on digestion by insects. Text. Res. J., 28, 303–314.CrossRefGoogle Scholar
  46. Moore, J. E. (1960). Modification of keratins with sulfones and related compounds. U. S. Patent 2, 955,016.Google Scholar
  47. Moore, J. E. and Ward, W. H. (1956). Cross-linking of bovine plasma albumin and wool keratin. J. Amer. Chem., 78, 2414–2418.CrossRefGoogle Scholar
  48. Parker, A. J. (1969). Protic-dipolar aprotic solvent effects on rates of biomolecular reactions. Chem. Rev., 69, 1–32.CrossRefGoogle Scholar
  49. Patterson, W. I., Geiger, W. B., Mizell, L. R. and Harris, M. (1941). Role of cystine in the structure of the fibrous protein, wool. J. Res. Natl. Bur. Standards, 27, 89–103.Google Scholar
  50. Powning, R. F. and Irzykiewicz, H. (1960). Cystine and glutathione reductases in clothes moth Tineola bisselliella Aust. J. Biol. Sci., 13, 59–68.Google Scholar
  51. Powning, R. F. and Irzykiewicz, H. (1962). The digestive proteinase of clothes moth larvae. I. Partial purification of the proteinase. J. Insect Physiol., 8, 267–274.CrossRefGoogle Scholar
  52. Price, V. H. and Menefee, E. (1967). On the effect of dimethyl sulfoxide on hair keratin. J. Invest. Dermatol., 49, 297–301.Google Scholar
  53. Ring, R. N., Tesoro, G. C. and Moore, D. R. (1967). Kinetics of the addition of alcohols to activated vinyl compounds. J. Org. Chem., 32, 1091–1094.CrossRefGoogle Scholar
  54. Schöberl, A. (1960). New reactions in reduced wool fibers. J. Text. Inst., 51, T613-T629.Google Scholar
  55. Schoene, D. L. (1951). Divinyl sulfone tanned proteins. U. S. Patent 2, 579, 871.Google Scholar
  56. Speakman, J. B. (1947). Mechano-chemical methods for use with animal fibres. J. Text. Inst., 38, T102-T126.Google Scholar
  57. Suminov, S. I. and Kost, A. N. (1969). Nucleophilic addition of amino groups to an activated carbon-carbon double bond. Russ. Chem. Rev., 38, 884–899.CrossRefGoogle Scholar
  58. Watt, I. C. (1965). The modification of wool fibers by cross-linking reactions. Proc. Int. Wool Textile Res. Conf., Paris, II, 259–270.Google Scholar
  59. Weidemann, E. and Wevers, H. W. (1971). The influence of mild alkali treatment of wool for short periods and at different temperatures. SAWTRI Bull., 5 (March), 21–29.Google Scholar
  60. Weigmann, H.-D. and Dansizer, C. (1971). The stabilization of irreversibly deformed keratin fibers. II. Mechanism of stabilization. Text. Res. J., 41, 576–586.CrossRefGoogle Scholar
  61. Whitfield, R. E. and Wasley, W. L. (1964). Reactions of proteins. In “Chemical Reactions of Polymers,” E. M. Fettes (Editor), Interscience, New York.Google Scholar
  62. Wold, F. (1972). Bifunctional reagents. In “Methods in Enzy-mology,” Vol. 25, C. H. W. Hirs and S. N. Timasheff (Editors), Academic Press, New York.Google Scholar
  63. Zahn, H. (1954). Preparation of microbiologically resistant wool by means of chemical modification. Part II. Paper chromatographic investigation of the samples. Text. Res. J., 24, 26–31.CrossRefGoogle Scholar
  64. Zahn, H., Beyer, H., Hammoudeh, M. M. and Schallah, A. (1969). Vernetzungs-und Selbstvernetzungsreaktionen bei Wolle. Melliand Textilber., 50, 1319–1324.Google Scholar
  65. Zahn, H. and Würz, A. (1954). Solubility in acid as a means of determining changes in wool. J. Text. Inst., 45, 88–92.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • N. H. Koenig
    • 1
  • Mendel Friedman
    • 1
  1. 1.Agricultural Research Service, U. S. Department of AgricultureWestern Regional Research LaboratoryBerkeleyUSA

Personalised recommendations