Thiolation and Disulphide Cross-Linking of Insulin to Form Macromolecules of Potential Therapeutic Value

  • M. Mahbouba
  • H. J. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)


Macromolecules have been prepared containing native insulin carried by a modified insulin skeleton made by partially thiolating the insulin hexamer and forming intermolecular cross-links through disulphide bridges. Oxidation of partially thiolated insulin (0.5 – 0.7 SH group/mole), formed by reacting insulin with AHTL, with, (a) potassium ferricyanide, (b) Cu++-oxygen gave water soluble macromolecules containing 20–26 and 410–708 monomer units respectively which had rod-random coil shape (light scattering). the larger molecules formed by (b) contained 8g-atom Cu++/hexamer unit and insulin. The insulin was firmly bound within the macromolecules and was probably bound within an insulin-modified insulin hexamer through coordination to copper.


Disulphide Bond Potassium Ferricyanide Disc Electrophoresis Cupric Chloride Native Insulin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alwan, S., Mahbouba, M. and Smith, H. J. personal communication.Google Scholar
  2. Benesch, R. and Benesch, R. E. (1956). Formation of peptide bonds by aminolysis of homocysteine thiolactones. J. Amer. Chem. Soc., 78, 1597–1599.CrossRefGoogle Scholar
  3. Benesch, R. and Benesch, R. E. (1958). Thiolation of proteins. Proc. Nat. Acad. Sci. U.S.A., 44, 848–853.CrossRefGoogle Scholar
  4. Blundell, T., Dodson, G., Hodgkin, D. and Mercola, D. (1972). Insulin: the structure in the crystal and its reflection in chemistry and biology. Advan. Protein Chem., 26, 279–402.CrossRefGoogle Scholar
  5. Brill, A. S. and Venable, J. H. (1968). The binding of transition metal ions to insulin crystals. J. Mol. Biol., 36, 343–353.PubMedCrossRefGoogle Scholar
  6. Cunningham, L. W., Fischer, R. L. and Vestling, C. S. (1955). A study of the binding of zinc and cobalt by insulin. J. Amer. Chem. Soc., 77, 5703–5707.CrossRefGoogle Scholar
  7. Eldjarn, L. and Pihl, A. (1957). On the mode of action of X-ray protective agents, interaction between biologically important thiols and disulphides. J. Biol. Chem., 225, 499–510.PubMedGoogle Scholar
  8. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archs. Biochem. Biophys., 82, 70–77.CrossRefGoogle Scholar
  9. Etemad-Moghadam, F., Mahbouba, M., Pugh, W. J. and Smith, H. J. Macromolecules formed by disulphide cross-linking of thiolated insulin and globin. In press.Google Scholar
  10. Fredericq, E.(1956). The association of insulin molecular units in aqueous solutions. Archs. Biochem. Biophys., 65, 218–228.Google Scholar
  11. Goldman, J. and Carpenter, F. (1974). Zinc binding, circular dichroism and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry, 13, 4566–4574.PubMedCrossRefGoogle Scholar
  12. Hallas-Moller, K., Petersen, K. and Schlichtkrull, J. (1952). Crystalline and amorphous insulin-zinc compounds with prolonged action. Science, 116, 394–398.CrossRefGoogle Scholar
  13. Hodgkin, D. C., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, G. G., Dodson, E. J., Mercola, D. A. and Vijayan, M. (1972). The arrangement in three dimensions of the atoms in insulin molecules and crystals. In “Insulin Action”, Fritz, I. ed. p.1–28, Academic Press, New York and London.Google Scholar
  14. Jivraj, S. S. personal communication.Google Scholar
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  16. Mahbouba, M., Pugh, W. J. and Smith, H. J. (1974). Disulphide cross-linking of thiolated a-chymotrypsin to form macro-molecules. J. Pharm. Pharmac., 26, 952–955.CrossRefGoogle Scholar
  17. Mahbouba, M., Mishra, S. P., Evans, J. C. and Smith, H. J. personal communication.Google Scholar
  18. Marocker, K. (1960). Association of Zn-free insulin. Acta Chem. Scand., 14, 194–196.CrossRefGoogle Scholar
  19. Mirsky, I. A. and Kawamura, K. (1966). Heterogeneity of crystalline insulin. Endocrinology, 78, 1115–1119.PubMedCrossRefGoogle Scholar
  20. Ornstein, L. and Davis, B. J. (1964). Disc electrophoresis. Annals N.Y. Acad. Sci., 121, 321–349; 404-427.CrossRefGoogle Scholar
  21. Pekar, A. H. and Frank, B. H.(1972). Conformation of proinsulin, a comparison of insulin and proinsulin self-association at neutral pH. Biochemistry, 11, 4013–4016.PubMedCrossRefGoogle Scholar
  22. Schlichthrull, J., Brange, J., Hein Christiansen, Aa, Hallund, O., Heding, L. G. and Jorgensen, K. H.(1972). Clinical aspects of insulin-antigenicity. Diabetes, 21, 649–656.Google Scholar
  23. Stacey, K. A.(1956). “Light scattering in Physical Chemistry”, Butterworths, London.Google Scholar
  24. Stephen, J., Gallop, R. G. and Smith, H. (1966). Separation of antigens by immunological specificity, use of disulphide-linked antibodies as immunosorbents. Biochem. J., 101, 717–720.PubMedGoogle Scholar
  25. Virupaksha, T. K. and Tarver, H. (1964). The reaction of insulin with N-acetyl homocysteine thiolactone: some chemical and biological properties of the products. Biochemistry, 3, 1507–1511.PubMedCrossRefGoogle Scholar
  26. White, F. H. and Sandoval, A. (1962). The thiolation of ribonuclease. Biochemistry, 1, 938–946.PubMedCrossRefGoogle Scholar
  27. Williamson, M. B. (1970). Catalysis of formation of mixed disulphides between cystine and β-globulins by copper ions. Biochem. Biophys. Res. Commun., 39, 379–383.PubMedCrossRefGoogle Scholar
  28. Zimm, B. H. (1948). The scattering of light and the radial distribution function of high polymer solutions. J. Chem. Phys., 16, 1093–1099.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. Mahbouba
    • 1
  • H. J. Smith
    • 1
  1. 1.Welsh School of PharmacyUniversity of Wales Institute of Science and TechnologyCardiff S. Wales, UK

Personalised recommendations