Skip to main content

The Role of Membrane Damage in Radiation-Induced Cell Death

  • Chapter
Membrane Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 84))

Abstract

Radiation-induced cell death is probably mediated primarily through deposition of energy, in single events, in a few vital macromolecules, or targets, the integrity of which is indispensable for proliferation. The genome is customarily regarded as the main target, but several lines of evidence support the inference that there are important consequences of events in nuclear membranes in eukaryotes, and plasma membrane in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLISON, A.C. and PATOH, G.R.: Chromosome damage in human diploid cells following activation of lysosomal enzymes. Nature, Lond. 207 (1965) 1170.

    Article  CAS  Google Scholar 

  2. ALPER, T.: Bacteriophage as indicator in radiation chemistry. Rad. Res. 2 (1955)119

    Article  CAS  Google Scholar 

  3. ALPER, T.: The modification of damage caused “by primary ionization of biological targets. Rad. Res. 5 (1956) 573.

    Article  CAS  Google Scholar 

  4. ALPER, T.: Lethal mutations and cell death. Physics in Med. and Biol.8 (1963) 365.

    Article  Google Scholar 

  5. ALPER, T.: A characteristic of the lethal effect of ionizing radiation on “Her-” “bacterial strains. Mutat. Res. 4 (1967) 15.

    Article  PubMed  CAS  Google Scholar 

  6. ALPER, T.: Cell death and its modification: the roles of primary lesions in membranes and DMA. In Biophysical Aspects of Radiation Quality. STI/PHB/286 IAEA, Vienna (1971) 171.

    Google Scholar 

  7. ALPEE, T., CEAMP, W.A., HAIG, D.A. and CLARKE, M.C.: Does the agent of scrapie replicate without nucleic acid? Mature, Lond. 214 (1967) 764.

    Article  Google Scholar 

  8. ALPER, T. and HAIG, D.A.: Protection by anoxia of the scrapie agent and some DNA and MA viruses irradiated as dry preparations. J. Gen. Tirol. 3 (1968) 157.

    Article  CAS  Google Scholar 

  9. ALPEE, T. and HOWARD-FLMDEES, P.: The role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178 (1956) 978.

    Article  Google Scholar 

  10. ALPEE, T. and MOOEE, J.L.: The interdependence of oxygen enhancement ratios for 250 kYp X-rays and fast neutrons. Br. J. Eadiol. 40 (1967) 843.

    Article  Google Scholar 

  11. ALPEE, T., MOOEE, J.L. and BEWLEY, D.K. Let as a determinant of bacterial radiosensitivity, and its modification by anoxia and glycerol. Ead. Ees. 32 (1967) 277.

    Google Scholar 

  12. AHDEESON, E.S. and TüEKOWITZ, H.: The experimental modification of the sensitivity of yeast to roentgen rays. imer. J. Eoentgenol. and Eadium Therapy 46 (1941) 537.

    Google Scholar 

  13. BACQ, Z.M. and ALEXANDER, P.: Fundamentals of Eadiobiology. Butterworths, London (1955) 185ff.

    Google Scholar 

  14. BRUSTAD, T.: Heavy ions and some aspects of their use in molecular and cellular radiobiology. Advances Biol. Med. Phys. 8 (1962) 161.

    CAS  Google Scholar 

  15. BEYANT, P.E.: LET as a determinant of oxygen enhancement ratio and shape of survival curve for Chlamydomonas. Int. J. Eadiat. Biol. 23 No. 3 (1973) 217.

    Article  Google Scholar 

  16. BTJEEELL, A.B., FELDSCHREIBEE and DEM, C.J.: DIA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim et Biophys. Acta 247 (1971) 38.

    Google Scholar 

  17. CHANDLER, R.L.: Experimental scrapie in the mouse. Ees. Vet. Sci. 4 (1963) 276.

    Google Scholar 

  18. CHRISTENSEN, B.C., TOBIAS, O.A. and TAYLOR, W.D.: Heavy-ion-induced single- and double-strand “breaks in ØK-174 replicative form DNA. Int. J. Radiat. Biol. 22 (1972) 457.

    Article  CAS  Google Scholar 

  19. CLAREE, M.C. and MILLSON, G.C.: The membrane location of scrapie infectivity. J. Gen. Tirol. (1976) in press.

    Google Scholar 

  20. CRAMP, W.A. and PETRUSEK, R.: The synthesis of DNA by membrane-DNA complexes from E. coli B/r and E. coli Bs-1 after exposure to UV light: a comparison with the effects of ionizing radiation. Int. J. Radiat. Biol. 26 (1974) 277.

    Article  CAS  Google Scholar 

  21. CRAMP, W.A. and WALKER, A.: The nature of the new MA synthesized by DNA-membrane complexes isolated from irradiated E. coli. Int. J. Radiat. Biol. 25 (1974) 175.

    Article  CAS  Google Scholar 

  22. CRAMP, W.A., WATKINS, D.K. and COLLINS, J.: Effects of ionizing radiation on bacterial DNA-membrane complexes. Nature New Biol. 235 No. 55 (1972) 76.

    PubMed  CAS  Google Scholar 

  23. DEFILIPPES, P.M.. and GUILD, W.R.: Irradiation of solutions of transforming DNA. Rad. Res. 11 (1959) 38.

    Article  CAS  Google Scholar 

  24. DESAI, I.D., SAWAMT, P.L. and TAPPEL, A.L.: Peroxidative and radiation damage to isolated lysosomes. Biochim et Biophys Acta 86 (1964) 277.

    Article  CAS  Google Scholar 

  25. EKERT, M.B. and GRUNBERG-MANAGO, M. s Effets des rayons γ sur l’efficacité de quelques polyribonucleotides en tant que messagers. C.R. Acad. Sc. Paris 263 (1966) 1762.

    CAS  Google Scholar 

  26. EKERT, B. and LATARJET, M-F.: Inactivation par les rayons Y des propriétés fonctionelles des RNA de transfert d’E. coli (phenyl-alanine et lysine). Int. J. Radiat. Biol. 20(1971) 521.

    Article  CAS  Google Scholar 

  27. EKERT, B., MONIER, R. and TORDJMAN, A.: Etude de l’inactivation par les radiation ionisantes des propriétés acceptrices des acides ribonucleiques de transfert. Bull, de la Soc. de Chim. Biol. 50 (1968) 1875.

    CAS  Google Scholar 

  28. EPHRUSSI-TAYLOR, H. and LATARJET, R.: Inactivation,par les rayons X, dfun facteur transformant du Pneumococque. Biochim et Biophys. Acta 16 (1955) 183.

    Article  CAS  Google Scholar 

  29. FORAGE, A.J.s The dependence of the oxygen enhancement ratio on the test of damage in irradiated bacteria. Int. J. Radiat. Biol. 20 (1971) 427.

    Article  CAS  Google Scholar 

  30. GIBBONS, R.A. and HUNTER, G.D.: Nature of the scrapie agent. Nature 21£ (1967) 1041

    Google Scholar 

  31. HILL, R.P.: A radiation sensitive mutant of Escherichia coli, Biochim. Biophys. Acta 30 (1958) 636.

    Article  CAS  Google Scholar 

  32. HOWARD-FLANDERS, P.: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Adv. Biol. Med. Physics 6 (1958) 554.

    Google Scholar 

  33. HOWARD-FLANDERS, P.: Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature 186 (1960) 485.

    Article  PubMed  CAS  Google Scholar 

  34. HOWARD-FLANDERS, P. and MOORE, D.: The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation. Rad. Res. 9 (1958) 422.

    Article  CAS  Google Scholar 

  35. HUNTER, G.D.: Scrapie. Progr. med. Virol. 18 (1974) 289.

    CAS  Google Scholar 

  36. JACOB, P., RYTER, A. and CITZIN, F.: On the association between DNA and membrane in bacteria. Proc. of Roy. Soc. of London (Series B. Biol. Sciences) Vol. 164 (1966) 267.

    Article  CAS  Google Scholar 

  37. KELLERER, A.M. and ROSSI, H.H.: The theory of dual radiation action. Curr. Topics Radiat. Res. Qtly. 8 (1972) 85.

    CAS  Google Scholar 

  38. KNIPPERS, R. and STRATLING, W.: The DNA-replicating capacity of isolated E. coli wall-membrane complexes. Nature, Lond. 226 (1970) 713.

    Article  CAS  Google Scholar 

  39. LATARJET, R., MOEL, B., HAIG, D.A., CLARKE, M.C. and ALPER,T.: Inactivation of the Scrapie agent by near-monochromatic ultraviolet light. Nature 227 (1970) 1341.

    Article  PubMed  CAS  Google Scholar 

  40. LEA, D.E.: Actions of Radiations on Living Cells. Cambridge Univ. Press (1946).

    Google Scholar 

  41. LEA, D.E. and CATCHESIDE, D.G.: The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J. Genet. 45 (1942) 216.

    Article  Google Scholar 

  42. MICHAEL, B.D., ADAMS, G.E., HEWITT, H.B., JONES, W.B.G. and WATTS, M.E.: A post-effect of oxygen in irradiated bacteria: a submillisecond fast mixing study. Rad. Res. 54 (1973) 239.

    Article  CAS  Google Scholar 

  43. MILLSON, G.C., HUNTER, G.D. and KMBERLIN, R.H.: An experimental examination of the scrapie agent in cell-membrane mixtures. II. The association of scrapie activity with membrane fractions. J. Comp. Pathol. 81 (1971) 255.

    Article  PubMed  CAS  Google Scholar 

  44. MOORE, J.L.: An induced enzyme in X-irradiated Escherichia coli: Comparison with lethal effects, J. Gen. Microbiol. 41 (1965) 119.

    PubMed  CAS  Google Scholar 

  45. MüNSON, R.J., HEARY, G.J., BRIDGES, B.A. and PRESTOH, R.J.: The sensitivity of Escherichia coli to ionizing particles of different LET’S. Int. J. Radiat. Biol. 13 (1968) 205.

    Article  Google Scholar 

  46. HEARY, G.J.: Chromosome aberrations and the theory of RBE. I. General considerations. Int. J. Radiat. Biol. 9 (1965) 477.

    Google Scholar 

  47. HEARY, G.J., HORGM, Y.U., BANCE, D.A. and STRETCH, A.: Further data on DHA strand breakage by various radiation qualities. Int. J. Radiat. Biol. 22 (1972) 525.

    Article  Google Scholar 

  48. SCHAMBRA, P.E. and HUTCHIHSOH, P.: The action of fast heavy ions on biological material. 2. Effects on T1 and ØX-174 bacteriophage and double-strand and single-strand DNA. Rad. Res. 23 (1964) 514.

    Article  CAS  Google Scholar 

  49. SCHOLES, G.: The radiation chemistry of aqueous solutions of nucleic acids and nucleoproteins. Prog. Biophys. and Molec. Biol. 13 (1963) 59.

    Article  CAS  Google Scholar 

  50. SETLOW, R.B. and CARRIER, W.L.: The disappearance of thymine dimers from DHA: an error correcting mechanism. Proc. Nat. Acad. Sci. 51 (1964) 226.

    Article  PubMed  CAS  Google Scholar 

  51. SHEHOY, M.A., ASQUITH, J.C., ADAMS, G.E., MICHAEL, B.D. and WATTS, M.E.: Time-resolved oxygen effects in irradiated bacteria and mammalian cells; a rapid-mix study. Rad. Res. 62 (1975) 498.

    Article  Google Scholar 

  52. SMITH, D.W., SCHALLER, H.E. and BOHHOEFFER, P.J.: DHA synthesis in vitro. Nature, Lond. 226 (1970) 711.

    Article  CAS  Google Scholar 

  53. SPARVOLI, E., GALLI, M.G., MOSCA, A. and PARIS, G.: Localization of DNA replicator sites near the nuclear membrane in plant cells. Exptal. Cell Res. 97 (1976) 74.

    Article  CAS  Google Scholar 

  54. TODD, P.W.: Reversible and irreversible effects of ionizing radiation on the reproductive integrity of mammalian cells cultured in vitro. Ph.D. Thesis UCRL 11614 University of California, Berkeley, Calif.

    Google Scholar 

  55. TOWN, C.D., SMITH, K.C. and KAPLAN, H.S.: Influence of ultrafast repair processes (independent of DHA polymerase-1) on the yield of DHA single-strand breaks in Escherichia coli K12 X-Irradiated in the presence or absence of oxygen. Rad. Res. 52 (1972) 99.

    Article  CAS  Google Scholar 

  56. VAN DER SCHANS, G.P. and VAN DER DRIFT, A.C.M.: Comparison of the oxygen-enhancement ratio for γ-ray induced double strand “breaks in the DIA of bacteriophage T7 as determined “by two different methods of analysis. Int. J. Radiat. Biol. 27 (1975) 437.

    Article  Google Scholar 

  57. WATKINS, D.K.: High o.e.r. for the release of enzymes from isolated mammalian lysosomes after ionizing radiation. Adv. Biol. Med. Physics 13 (1970) 289.

    CAS  Google Scholar 

  58. WATKINS, D.K. and DEACON, S.: Comparative effects of electron and neutron irradiation on the release of enzymes from isolated rat-spleen lysosomes. Int. J. Radiat. Biol. 23 (1973) 41.

    Article  CAS  Google Scholar 

  59. WILLS, E.D. and WILKINSON, A.E.: Release of enzymes by irradiation and the relation of lipid peroxide formation to enzyme release. Biochem. J. 99 (1966) 657.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Alper, T. (1977). The Role of Membrane Damage in Radiation-Induced Cell Death. In: Miller, M.W., Shamoo, A.E. (eds) Membrane Toxicity. Advances in Experimental Medicine and Biology, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3279-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3279-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3281-7

  • Online ISBN: 978-1-4684-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics