Skip to main content

The Localization of Ion-Selective Pumps and Paths in the Plasma Membranes of Turtle Bladders

  • Chapter
Membrane Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 84))

Abstract

Turtle bladders actively transport Na, Cl, and HCO3 to the serosal fluid; and each ionic flux is independent of the others under short-circuiting conditions. This behavior mimics that of a parallel network of ion-selective, electrically-conductive paths and pumps in each membrane, — a picture consistent with recent evidence along three independent lines. (1) The potential response to increases in mucosal Na concentration indicates that the Na conductance of the apical membrane is 70% of the transepithelial conductance and that the Na transfer across this membrane occurs via an electrically-charged carrier operation. (2) The sidedness and selectivity of transport changes induced by certain agents are the following. Acting from the mucosal side only, amiloride blocks passive Na transfer; and catecholamines (or imidazoles or theophylline) accelerate active anion transport. Acting from the serosal side only, ouabain blocks active Na transport; and disulfonic stilbenes or acetazolamide block passive anion transfers. (3) The surface charge density of the apical membrane differs from that of basal-lateral during free-flow electrophoresis (FFE) of a mixed membrane fraction of epithelial cells. Basal-lateral membrane fragments (containing ouabain-sensitive ATPase and a stilbene-binding protein) migrate toward the positive electrode while apical membrane fragments (contain nor-epinephrine-sensitive adenylate cyclase and cAMP-activated protein kinase) migrate toward the negative electrode. (4) Thus, ouabain, nor-epinephrine, and a disulfonic stilbene are shown to be useful membrane probes for the Na pump, the anion pumps, and the passive anion transfer paths, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodsky, W.A. and T.P. Schilb Osmotic properties of the isolated turtle bladder Am. J. Physiol., 208:46–57, 1965

    PubMed  CAS  Google Scholar 

  • Brodsky, W.A. and T.P. Schilb Ionic mechanisms for sodium and chloride transport across turtle bladders Am. J. Physiol., 210: 997–1008, 1966

    PubMed  Google Scholar 

  • Brodsky, W.A., Schilb, T.P. and J.L. Parkes Moderators of anion transport in the isolated turtle bladder Symposium on Acidification; International Congress of Physiology (In Press), 1976

    Google Scholar 

  • Dowd, F. and A. Schwartz The presence of cyclic AMP-stimulated protein kinase substrates and evidence for endogenous protein kinase activity in various Na, K-ATPase preparations from brain, heart and kidney J. Molec. & Cell, Cardiol., 7:483–497, 1975

    Article  CAS  Google Scholar 

  • Ehrenspeck, G. and W.A. Brodsky Effects of 4-acetamido-4′-isothiocyano-2,2′-disulfonic stilbene on ion transport in turtle bladders Biochim. Biophys. Acta, 419: 555–558, 1976

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C.F. Inhibitory effect of acetazolamide on the active chloride and bicarbonate transport mechanisms across short-circuited turtle bladders Biochim. Biophys. Acta, 193:146–158, 1969

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C.F., and T.P. Schilb Acetazolamide sensitive short-circuiting current versus mucosal bicarbonate concentration in turtle bladder Biochim. Biophys. Acta. 193:419–429, 1969

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C.F., Shamoo, Y.E. and W.A. Brodsky Electrical nature of active chloride transport across short-circuited turtle bladders Am. J. Physiol., 212:641–650, 1967a

    CAS  Google Scholar 

  • Gonzalez, C.F., Shamoo, Y.E., Wyssbrod, H.R., Solinger, R.E., and W.A. Brodsky Electrical nature of sodium transport across the isolated turtle bladder Am. J. Physiol., 213:333–340, 1967b

    PubMed  CAS  Google Scholar 

  • Hannig, K. The application of free-flow electrophoresis to the separation of macromolecules and particles of biological importance. Handbuch: Modern Separation Methods of Macromolecules and Particles, Ed., Th. Gerritsen, John Wiley & Sons, Inc., Vol. 2, S. 45, 1969

    Google Scholar 

  • Hannig, K. Electrophoretic separation of Cells and particles by continuous free-flow electrophoresis Handbuch: Techniques of Biochemical and Biophysical Morphology, Ed., D. Glick and R. Rosenbaum, John Wiley & Sons, Inc. N.Y., 1972

    Google Scholar 

  • Heidrich, H.G., Kinne, R., Kinne-Saffran, E. and R. Hannig The polarity of the proximal tubule cell in rat kidney J. Cell Biol., 54:232–245, 1972

    Article  PubMed  CAS  Google Scholar 

  • Heinz, E. and P. Geck The electrical potential difference as a driving force in Na-linked cotransport of organic solutes. Symposium: “Coupled Transport Phenomena in Cells and Tissues”, Raven Press, Inc., N.Y., N.Y. (In Press), 1976

    Google Scholar 

  • Hirschhorn, N., and H.S. Frazier Intracellular electrical potential of the epithelium of turtle bladder Am. J. Physiol., 220:1158–1161, 1971

    PubMed  CAS  Google Scholar 

  • Rothstein, A. Cabantchik, Z. I., Balshin, M. and Juliano, R. Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes. Biochim. Biophys. Res. Commum. 64:144–150, 1975

    Article  CAS  Google Scholar 

  • Schilb, T.P. and W.A. Brodsky Transient acceleration of transmural water flow by inhibition of sodium transport in turtle bladders Am. J. Physiol., 219:590–596, 1970

    PubMed  CAS  Google Scholar 

  • Schwartz, I.L., Shlatz, L.J., Kinne-Saffran, E., and R. Kinne Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone Proc. Nat. Acad. Sci., 71:2595–2599, 1974

    Article  PubMed  CAS  Google Scholar 

  • Shamoo, Y.E., and W.A. Brodsky The (Na + K)-dependent adenosine triphosphatase in the isolated mucosal cells of turtle bladder. Biochim. Biophys. Acta., 203:111–123, 1970

    Article  PubMed  CAS  Google Scholar 

  • Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerve Biochim. Biophys. Acta, 23:394–401, 1957

    Article  PubMed  CAS  Google Scholar 

  • Solinger, R.E., Gonzalez, C.F., Shamoo, Y.E., Wyssbrod, H.R. and W.A. Brodsky Effect of ouabain on ion transport mechanisms in the isolated turtle bladder Am. J. Physiol., 215:249–261, 1968

    PubMed  CAS  Google Scholar 

  • Steinmetz, P.R. Cellular mechanisms of urinary acidification Physiol, Rev., 54:890–956, 1975

    Google Scholar 

  • Wilczewski, T. and W.A. Brodsky Effect of ouabain and amiloride on Na pathways in turtle bladders Am. J. Physiol., 228:781–790, 1975

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Brodsky, W.A., Ehrenspeck, G. (1977). The Localization of Ion-Selective Pumps and Paths in the Plasma Membranes of Turtle Bladders. In: Miller, M.W., Shamoo, A.E. (eds) Membrane Toxicity. Advances in Experimental Medicine and Biology, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3279-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3279-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3281-7

  • Online ISBN: 978-1-4684-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics