Skip to main content

On the Nature of the Transport Pathway Used for Ca-Dependent K Movement in Human Red Blood Cells

  • Chapter
Membrane Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 84))

Abstract

This paper is concerned with the mechanism by which energy-depleted human red cells become permeable to K (but not to Na) when they are exposed to Ca. In an attempt to distinguish a diffusion from a mediated process competitive type effects of different ions and their sidedness of action on K transport are considered as well as the action of certain transport inhibitors. While the nature of the interactions implies the involvement of a mediated process (perhaps an altered form of the Na:K pump apparatus) more direct evidence will be needed to make a definitive assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADRIAN, R.H.: Rectification in muscle membrane, Ch. 8, Prog, in Biophys. and Molec. Biol. (Butler, J.A.V., Noble, D. Eds.). Pergamon Press. New York 19 (1961) 341.

    Google Scholar 

  2. ASTRUP, J.: Na and K in human red cells. Variations among centrifuged cells. Scand. J. Lab. and Clin. Invest. 33 (1974) 231.

    Article  CAS  Google Scholar 

  3. BLUM, R.M. and HOFFMAN, J.F.: The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells. J. Memb. Biol. 6 (1971) 315.

    Article  CAS  Google Scholar 

  4. BLUM, R.M. and HOFFMAN, J.F.: Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane. Biochem. Biophys. Res. Comm. 25 (1972) 1146.

    Article  Google Scholar 

  5. BLUM, R.M. and HOFFMAN, J.F.: Unpublished results.

    Google Scholar 

  6. BRAZY, P.C. and GUNN, R.B.: Furosemide inhibition of chloride transport in human red blood cells. Physiologist 18 (1975) 151.

    Google Scholar 

  7. CHA, Y.N., SHIN, B.C., and LEE, K.S.: Active uptake of Ca and Ca-activated MgATPase in red cell membrane fragments. J. Gen. Physiol. 57 (1971) 202.

    Article  PubMed  CAS  Google Scholar 

  8. COLOMBE, B.W. and MACEY, R.I.: Effects of calicum on potassium and water transport in human erythrocyte ghosts. Biochim. Biophys. Acta. 363 (1974) 226.

    Article  PubMed  CAS  Google Scholar 

  9. EKMAN, A., MANNINEN, V. and SALMINEN, S.: Ion movements in red cells treated with propranolol. Acta Physiol. Scand. 75 (1969) 333.

    CAS  Google Scholar 

  10. FERRIRA, H.G. and LEW, V.L.: Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 259 (1976) 47.

    Article  Google Scholar 

  11. GARDOS, G.: The role of calcium in the potassium permeability of human erythrocytes. Physiol. Sci. Acad. Hung. 15 (1959) 121.

    CAS  Google Scholar 

  12. GARDOS, G.: The permeability of human erythrocytes to potassium. Acta. Physiol. Sci. Acad. Hung. 10 (1956) 185.

    CAS  Google Scholar 

  13. GARDOS, G., SZASZ, I. and SARKADI, B.: Mechanism of Ca-dependent K-transport in human red cells. Biomembranes: Structure and Function (Gardos, G. and SZASK, I. Eds). North Holland, Amsterdam, FEBS Proc. 35 (1975) 167.

    Google Scholar 

  14. GARRAHAN, P.J. and GARAY, R.P.: A kinetic study of the Na pump in red cells. Its relevance to the mechanism of active transport. Annals New York Acad. Sci. 242 (1974) 445.

    Article  CAS  Google Scholar 

  15. GLYNN, I.M. and WARNER, A.E.: Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drugs antiarrhythmic effect. Brit. J. Pharmac. 44 (1972) 271.

    CAS  Google Scholar 

  16. GLYNN, I.M. and HOFFMAN, J.F.: Nucleotide requirements for sodium-sodium exchange catalyzed by the sodium pump in human red cells. J. Physiol. 218 (1971) 239.

    PubMed  CAS  Google Scholar 

  17. GRIGARZIK, H. and PASSOW, H.: Versuche zum mechanismus der bleiwirkung aul die kalium-permeabilitat roter blutkorperchen. Pflugers Archiv. 267, (1958) 73.

    Article  PubMed  CAS  Google Scholar 

  18. HARDY, JR. M.A. and LEW, V.L.: Captacion de calcio y flujo de potasio en eritrocitos humanos depletados. Proc. XVI Meeting Soc. Argentina Invest. Clin. Cordoba, Argentina (1971) 199.

    Google Scholar 

  19. HOFFMAN, J.F.: Cation transport and structure of the red cell plasma membrane. Circulation. 26 (1962) 1201.

    CAS  Google Scholar 

  20. HOFFMAN, J.F.: The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41 (1966) 666.

    Article  PubMed  CAS  Google Scholar 

  21. HOFFMAN, J.F. and KNAUF, P.A.: The mechanism of the increased K transport induced by Ca in human red blood cells. Erythrocytes, thrombocytes and leukocytes (Gerlach, E., Moser, K., Deutsch, E., and Wilmanns, W. Eds.). Georg Thieme. Stuttgart (1973) 66.

    Google Scholar 

  22. HOFFMAN, J.F. and PROVERBIO, F.: Membrane ATP and the functional organization of the red cell Na:K pump. Annals New York Acad. Sci. 242 (1974) 459.

    Article  CAS  Google Scholar 

  23. KNAUF, P.A., PROVERBIO, F. and HOFFMAN, J.F.: Electro-phoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts. J. Gen. Physiol. 63 (1974) 324.

    Article  PubMed  CAS  Google Scholar 

  24. KNAUF, P.A., RIORDAN, J.R., SCHUMANN, B., WOOD-GUTH, I., and PASSOW, H.: Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J. Memb. Biol. 25 (1975) 1.

    Article  CAS  Google Scholar 

  25. KNIGHT, A.B. and WELT, L.G.: Intracellular potassium. A determinant of the sodium-potassium pump rate. J. Gen. Physiol. 63 (1974) 351.

    Article  PubMed  CAS  Google Scholar 

  26. KREGENOW, F. and HOFFMAN, J.F.: Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J. Gen. Physiol. 60 (1972) 406.

    Article  PubMed  CAS  Google Scholar 

  27. LEW, V.L.: Effect of ouabain on the Ca-dependent increase in K permeability in depleted guinea pig red cells. Biochim. Biophys. Acta 249 (1971) 236.

    Article  PubMed  CAS  Google Scholar 

  28. LEW, V.L.: On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes. Comparative Biochemistry and Physiology of Transport (Bolis, L., Block, K., Luria, S.E., and Lynen, F. Eds.). North-Holland, Amsterdam. (1974) 310.

    Google Scholar 

  29. PASSOW, H.: Zusammenwirken von Membranstruktur und Zellstrffwechsel bei Regulierung der Ionenpermeabilität roten Blutkörperchen. Biochemie Des Aktiven Transports. Colloq. Ges. Physiol. Chem. Mosbach/Baden, Springer-Verlag, Berlin (1961) 54.

    Google Scholar 

  30. PASSOW, H.: Metabolic control of passive cation permeability in human red cells. Cell Surface Interactions (Brown, H.D. Ed.). Scholaris Library, New York (1963) 57.

    Google Scholar 

  31. PASSOW, H.: The red blood cell: Penetration, distribution and toxic action of heavy metals. Effects of Metals on Cells, Subcellular Elements and Macromolecules (Maniloff, J., Coleman, J.R. and Miller, M. Eds.). pp. 291–340. charles C. Thomas, Springfield, Ill. (1970).

    Google Scholar 

  32. PLISHKER, G. and GITELMAN, H.J.: Calcium transport in intact human erythrocytes. J. Gen. Physiol. 68 (1976) 29.

    Article  PubMed  CAS  Google Scholar 

  33. PONDER, E.: Volume changes, ion exchanges, and fragilities of human red cells in solutions of the chlorides of the alkaline earths. J. Gen. Physiol. 36 (1953) 767.

    Article  PubMed  CAS  Google Scholar 

  34. PORZIG, H.: Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts. J. Physiol. 249 (1975) 27.

    PubMed  CAS  Google Scholar 

  35. REED, P.W.: Effects of the divalent cation ionophore A23187 on K permeability of rat erythrocytes. J. Biol. Chern. 25 (1976) 3489.

    Google Scholar 

  36. RIORDAN, J.R. and PASSOW, H.: The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts. Comparative Physiology (Bolis, L., Schmidt-Nielsen, K., and Mandrell, S.H.P. Eds.). North-Holland, Amsterdam (1973) 543.

    Google Scholar 

  37. ROMERO, P.J. and WHITTAM, R.: The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. 214 (1971) 481.

    PubMed  CAS  Google Scholar 

  38. SACHS, J.R. and CONRAD, M.E.: Effect of tetraethylammon-ium on the active cation transport system of the red blood cell. Am. J. Physiol. 215 (1968) 795.

    PubMed  CAS  Google Scholar 

  39. SACHS, J.R.: Sodium movements in the human red blood cell. J. Gen. Physiol. 56 (1970) 322.

    Article  PubMed  CAS  Google Scholar 

  40. SACHS, J.R.: Ouabain-insensi tive sodium movements in the human red blood cell. J. Gen. Physiol. 57 (1971) 259.

    Article  PubMed  CAS  Google Scholar 

  41. SCHATZMANN, H.J.: ATP dependent Ca extrusion from human red cells. Experientia. 22 (1966) 364.

    Article  PubMed  CAS  Google Scholar 

  42. SCHATZMANN, H.J. and VINCENZI, F.F.: Calcium movements across the membrane of human red cells. J. Physiol. 201 (1969) 369.

    PubMed  CAS  Google Scholar 

  43. SIMONS, T.J.B.: The preparation of human red cell ghosts containing calcium buffers. J. Physiol. 256 (1976) 209.

    PubMed  CAS  Google Scholar 

  44. SIMONS, T.J.B.: Calcium-dependent potassium exchange in human red cell ghosts. J. Physiol. 256 (1976) 227.

    PubMed  CAS  Google Scholar 

  45. WHITTAM, R., WHEELER, K.P. and BLAKE, A.: Oligomycin and active transport reactions in cell membranes. Nature. 203 (1964) 720.

    Article  PubMed  CAS  Google Scholar 

  46. WHITTAM, R.: Control of membrane permeability to potassium in red blood cells. Nature. 219 (1968) 610.

    Article  PubMed  CAS  Google Scholar 

  47. WILBRANDT, W.: A relation between the permeability of the red cell and its metabolism. Trans. Farad. Soc. 33 (1937) 956.

    Article  CAS  Google Scholar 

  48. This work was supported by USPHS grants HL 09906 and AM 17433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Hoffman, J.F., Blum, R.M. (1977). On the Nature of the Transport Pathway Used for Ca-Dependent K Movement in Human Red Blood Cells. In: Miller, M.W., Shamoo, A.E. (eds) Membrane Toxicity. Advances in Experimental Medicine and Biology, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3279-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3279-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3281-7

  • Online ISBN: 978-1-4684-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics