Skip to main content

The Effect of Red Cell 2,3-DPG Changes Induced by Diabetic Ketoacidosis on Parameters of the Oxygen Dissociation Curve in Man

  • Chapter
Oxygen Transport to Tissue — II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 75))

Abstract

As early as in 19 39 Guest and Rapoport reported a striking decrease of the red cell 2,3-diphosphoglycerate (2,3-DPG) concentration in patients suffering from severe diabetic ketoacidosis (1). This observation has been amply confirmed in more recent years (2,3,4,5), when interest was resurrected to investigate the regulation of red cell 2,3-DPG after Benesch and Benesch (6) and Chanutin and Curnish (7) had shown the effect of 2,3-DPG on the oxygen affinity of hemoglobin. 2,3-DPG is formed as an intermediary product of red cell glycolysis; increase in hydrogen-ion concentration decreases red cell glycolysis mainly through inhibition of the phosphofructokinase step (8) and it has been widely accepted that the remarkable low erythrocyte 2,3-DPG levels in diabetic ketoacidosis — as little as 2o per cent of the normal concentration is observed — are due to this mechanism and an additional inhibition of di-phosphoglycerate mutase at lower pH (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guest, G.M., Rapoport, S.: Am.J.Dis.Child. 58, 1072, 1939.

    CAS  Google Scholar 

  2. Bellingham, A.J., Detter, J.C., Lenfant, C.: Trans. Ass.Am.Phys. 83, 113, 1970.

    CAS  Google Scholar 

  3. Alberti, K.G.M.M., Darley, J.H., Emerson, P.M., Hockaday, T.D.R.: Lancet 1972 II, 391.

    Article  Google Scholar 

  4. Ditzel, J.: Advanc.Exp.Med.Biol. 37 A, 163, 1973.

    Google Scholar 

  5. Ditzel, J.: Horm.Metabol.Res. 5, 471, 1973.

    Article  CAS  Google Scholar 

  6. Benesch, R., Benesch, R.E.: Biochem.Biophys.Res. Commun. 26, 162, 1967.

    Article  PubMed  CAS  Google Scholar 

  7. Chanutin, A., Curnish, R.R.: Arch.Biochem.Biophys. 121, 96, 1967.

    Article  PubMed  CAS  Google Scholar 

  8. Rapoport, S.: in Campbell, P.N., Greville,G.D. (eds): Essays of Biochemistry 4, 69, New York, Academic Press, 1968.

    Google Scholar 

  9. Rose, Z.B.: Arch.Biochem.Biophys. 138, 903, 1973.

    Article  Google Scholar 

  10. Kühn, B., Jacobasch, G., Gerth, C., Rapoport, S.M.: Eur.J.Biochem. 43, 437, 1974.

    Article  PubMed  Google Scholar 

  11. Rapoport, S., Maretzki, D., Schewe, C.: in Rørth, M., Astrup, P. (ed.) Oxygen affinity of hemoglobin and red cell acid base status, p. 527–538. Copenhagen: Munksgaard, New York: Academic Press 1972

    Google Scholar 

  12. Bauer, Ch.: Life Sci. 8, 1o41, 1969.

    Article  Google Scholar 

  13. Benesch, R.E., Benesch, R., Yu, C.I.: Biochemistry 8, 2567, 1969.

    Article  PubMed  CAS  Google Scholar 

  14. Siggaard-Andersen, O., Sailing, N.: Scand.J.Clin. Lab.Invest. 27, 361, 1971.

    Article  PubMed  CAS  Google Scholar 

  15. Tomita, S., Riggs, A.: J.Biol.Chem. 246, 547,1971.

    PubMed  CAS  Google Scholar 

  16. Duhm, J.: in Bicher, H.I., Bruley, D.F. (ed.) Oxygen transport to tissue, p. 179–186. New York: Plenum Publishing Corporation 1972

    Google Scholar 

  17. Parekh, A.C., Jung, D.H.: Clin.Chim.Acta 27, 373, 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Ericsson, A., de Verdier, C.H.: Scand.J.Clin.Lab. Invest. 29, 85, 1972.

    Article  Google Scholar 

  19. Duvelleroy, M.A., Buckles, R.C., Rosenkaimer, S., Tung, C., Laver, M.A.: J. Appl. Physiol. 28, 227, 1970.

    PubMed  CAS  Google Scholar 

  20. Riggs, A.: Proc.Nat.Acad.Sci. 68, 2062, 1971.

    Article  PubMed  CAS  Google Scholar 

  21. Benesch, R., Benesch, R.E., Yu, C.J.: Proc.Nat. Acad.Sci. 59, 526, 1968.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Standl, E., Ditzel, J. (1976). The Effect of Red Cell 2,3-DPG Changes Induced by Diabetic Ketoacidosis on Parameters of the Oxygen Dissociation Curve in Man. In: Grote, J., Reneau, D., Thews, G. (eds) Oxygen Transport to Tissue — II. Advances in Experimental Medicine and Biology, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3273-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3273-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3275-6

  • Online ISBN: 978-1-4684-3273-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics