Skip to main content

Superoxide Dismutases: Studies of Structure and Mechanism

  • Chapter
Book cover Iron and Copper Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 74))

Abstract

Superoxide dismutases are enzymes of defense which serve to protect respiring cells against a product of their own respiration. This is achieved by a catalytic scavenging of the superoxide radical which, surprisingly, is a rather commonplace intermediate of the reduction of oxygen. The reaction catalyzed is:

$$O_2^-+O_2^-+2{H^+ }H{}_2+O_2$$

Enhancing the rate of this particular reaction may appear to “be a peculiar undertaking for an enzyme, since this reaction is reasonably rapid, even in the absence of catalysis and since several transition metal cations serve as effective catalysts. Nevertheless superoxide dismutases are indispensable because they operate with ultimate efficiency and are present in abundance, whereas free transition metal cations are less effective and are not plentiful inside cells. It is a fact that all of the superoxide dismutase activity, which can be measured in crude extracts of such diverse materials as erythrocytes, mammalian liver or Escherichia coli, can be accounted for in terms of the superoxide dismutases which they contain. There is thus no significant superoxide dismutase activity in these extracts save that due to these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fridovich, I. (1972) Accounts Chem. Res. 5, 321–326.

    Article  CAS  Google Scholar 

  2. McCord, J. M., Beauchamp, C. O., Goscin, S., Misra, H. P., and Fridovich, I. (1973) in Proc. 2nd Int. Symp. Oxidases and Related Redox Systems, Memphis, 1971 (King, T. E., Mason, H. S., and Morrison, M., eds) pp. 51–76, University Park Press, Baltimore.

    Google Scholar 

  3. Fridovich, I. (1974) Advan. Enzymol. 41, 35–97.

    CAS  Google Scholar 

  4. Fridovich, I. (1974) in Molecular Mechanisms of Oxygen Activation (Hayaishi, O., ed.) pp. 453–477, Academic Press, New York.

    Google Scholar 

  5. Sawada, Y., and Yamazaki, I. (1974) Tampakushktsu Kakusan Koso 19, 527–536.

    CAS  Google Scholar 

  6. Halliwell, B. (1974) New Phytology 73, 1075–1086.

    Article  CAS  Google Scholar 

  7. Bors, W., Saran, M., Lengfelder, E., Stöttl, R., and Michel, C. (1974) Curr. Top. Radiat. Res. Q. 9, 247–309.

    PubMed  CAS  Google Scholar 

  8. Fridovich, I. (1975) Ann. Rev. Biochem. 44, 147–159.

    Article  PubMed  CAS  Google Scholar 

  9. Bouanchaud, D. (1975) Recherche 6, 370–373.

    CAS  Google Scholar 

  10. Misra, H. P., and Fridovich, I. (1972) J. Biol. Chem. 247, 3410–3414.

    PubMed  CAS  Google Scholar 

  11. Rapp, U., Adams, W. C., and Miller, R. W. (1973) Canad. J. Biochem. 51, 158–171.

    Article  CAS  Google Scholar 

  12. Goscin, S. A., and Fridovich, I. (1972) Biochim. Biophys. Acta 289, 276–283.

    Article  PubMed  CAS  Google Scholar 

  13. Asada, K., Urano, M., and Takehashi, M. (1973) Europ. J. Biochem. 36, 257–266.

    Article  PubMed  CAS  Google Scholar 

  14. Weisiger, R. A., and Fridovich, I. (1973) J. Biol. Chem. 248, 3582–3592.

    PubMed  CAS  Google Scholar 

  15. McCord, J. M., and Fridovich, I. (1969) J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  16. Beem, K., Rich, W. E., and Rajagopalan, K. V. (1974) J. Biol. Chem. 249, 7298–7305.

    PubMed  CAS  Google Scholar 

  17. Calabrese, L., Frederici, G., Bannister, W. H., Bannister, J. V., Rotilio, G., and Finazzi-Agro, A. (1975) Europ. J. Biochem. 56, 305–309.

    Article  PubMed  CAS  Google Scholar 

  18. Mann, T., and Keilin, D. (1938) Proc. Roy. Soc. (London) B126, 303.

    Google Scholar 

  19. Abernethy, J. L., Steinman, H. M., and Hill, R. L. (1974) J. Biol. Chem. 249, 7339–7347.

    PubMed  CAS  Google Scholar 

  20. Evans, H. J., Steinman, H. M., and Hill, R. L. (1974) J. Biol. Chem. 249, 7315–7325.

    PubMed  CAS  Google Scholar 

  21. Steinman, H. M., Naik, V. R., Abernethy, J. L., and Hill, R. L. (1974) J. Biol. Chem. 249, 7326–7338.

    PubMed  CAS  Google Scholar 

  22. Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C. (1975) Proc. Nat. Acad. Sci. U.S.A. 72, 1349–1353.

    Article  CAS  Google Scholar 

  23. Richardson, J. S., Thomas, K. A., and Richardson, D. C. (1975) Biochem. Biophys. Res. Commun. 63, 986–992.

    Article  PubMed  CAS  Google Scholar 

  24. Richardson, J. S., and Richardson, D. C. personal communication.

    Google Scholar 

  25. Fee, J. A., and Gaber, B. P. (1972) J. Biol. Chem. 247, 60–65.

    PubMed  CAS  Google Scholar 

  26. Fee, J. A. (1973) J. Biol. Chem. 248, 4229–4234.

    PubMed  CAS  Google Scholar 

  27. Fee, J. A. (1973) Biochim. Biophys. Acta 295, 107–116.

    Article  PubMed  CAS  Google Scholar 

  28. Rotilio, G., Calabrese, L., Mondovi, B., and Blumberg, W. E. (1974) J. Biol. Chem. 249, 3157–3160.

    PubMed  CAS  Google Scholar 

  29. Gaber, B. P., Brown, R. D., Koenig, S. H., and Fee, J. A. (1972) Biochim. Biophys. Acta 271, 1–5.

    Article  PubMed  CAS  Google Scholar 

  30. Rotilio, G., Morpurgo, L., Giovagnoli, C., Calabrese, L., and Mondovi, B. (1972) Biochemistry 11, 2187–2192.

    Article  PubMed  CAS  Google Scholar 

  31. Forman, H. J., Evans, H. J., Hill, R. L., and Fridovich, I. (1973) Biochemistry 12, 823–827.

    Article  PubMed  CAS  Google Scholar 

  32. Stokes, A. M., Hill, H. A., Bannister, W. H., and Bannister, J. V. (1973) FEBS Lett. 32, 119–123.

    Article  PubMed  CAS  Google Scholar 

  33. Haffner, P. H., and Coleman, J. E. (1973) J. Biol. Chem. 248, 6626–6629.

    PubMed  CAS  Google Scholar 

  34. Fee, J. A., and Briggs, R. G. (1975) Biochim. Biophys. Acta 400, 439–450.

    Article  PubMed  CAS  Google Scholar 

  35. Rotilio, G., Calabrese, L., and Coleman, J. E. (1973) J. Biol. Chem. 248, 3855–3859.

    CAS  Google Scholar 

  36. Forman, H. J., and Fridovich, I. (1973) J. Biol. Chem. 248, 2645–2649.

    PubMed  CAS  Google Scholar 

  37. Beauchamp, C. O., and Fridovich, I. (1973) Biochim. Biophys. Acta 317, 50–64.

    Article  PubMed  CAS  Google Scholar 

  38. Rotilio, G., Bray, R. C., and Fielden, E. M. (1972) Biochim. Biophys. Acta 268, 605–609.

    Article  PubMed  CAS  Google Scholar 

  39. Klug, D., Rabani, J., and Fridovich, I. (1972) J. Biol. Chem. 247, 4839–4842.

    PubMed  CAS  Google Scholar 

  40. Klug-Roth, D., Fridovich, I., and Rabani, J. (1973) J. Am. Chem. Soc. 95, 2786–2790.

    Article  PubMed  CAS  Google Scholar 

  41. Fielden, E. M., Roberts, P. B., Bray, R. C., and Rotilio, G. (1973) Biochem. Soc. Transactions 1, 52–53.

    CAS  Google Scholar 

  42. Bannister, J. V., Bannister, W. H., Bray, R. C., Fielden, E. M., Roberts, P. B., and Rotilio, G. (1973) FEBS Lett. 32, 303–306.

    Article  PubMed  CAS  Google Scholar 

  43. Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., and Calabrese, L. (1974) Biochem. J. 139, 49–60.

    PubMed  CAS  Google Scholar 

  44. Hodgson, E. K., and Fridovich, I. (1973) Biochem. Biophys. Res. Commua. 54, 270–274.

    Article  CAS  Google Scholar 

  45. Symonyan, M. A., and Nalbandyan, R. M. (1972) FEBS Lett. 28, 22–24.

    Article  PubMed  CAS  Google Scholar 

  46. Rotilio, G., Morpurgo, L., Calabrese, L., and Mondovi, B. (1973) Biochim. Biophys. Acta 302, 229–235.

    Article  PubMed  CAS  Google Scholar 

  47. Bray, R. C., Cockle, S. H., Fielden, E. M., Roberts, P. B., Rotilio, G., and Calabrese, L. (1974) Biochem. J. 139, 43–48.

    PubMed  CAS  Google Scholar 

  48. Rotilio, G., Calabrese, L., Bossa, F., Barra, D., Finazzi-Agro, A., and Mondovi, B. (1972) Biochemistry 11, 2182–2187.

    Article  PubMed  CAS  Google Scholar 

  49. Beauchamp, C. O., and Fridovich, I. (1973) Biochim. Biophys. Acta 317, 50–64.

    Article  PubMed  CAS  Google Scholar 

  50. Hodgson, E. K., and Fridovich, I. (1975) Biochemistry, in press.

    Google Scholar 

  51. Oshino, N., Jamieson, D., Sugano, T., and Chance, B. (1975) Biochem. J. l46, 67–77.

    Google Scholar 

  52. McCord, J. M., personal communication.

    Google Scholar 

  53. Tyler, D. D. (1975) Biochem. J. l47, 493–504.

    Google Scholar 

  54. Haffrier, P. H., and Coleman, J. E. (1973) J. Biol. Chem. 248, 6626–6629.

    Google Scholar 

  55. Beauchamp, C. O. (1973) Ph.D. dissertation, Duke University.

    Google Scholar 

  56. Hirata, F., and Hayaishi, O. (1975) J. Biol. Chem. 250, 5960–5966.

    PubMed  CAS  Google Scholar 

  57. Puget, K., and Michelson, A. M. (1974) Biochem. Biophys. Res. Commun. 58, 830–838.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Fridovich, I. (1976). Superoxide Dismutases: Studies of Structure and Mechanism. In: Yasunodu, K.T., Mower, H.F., Hayaishi, O. (eds) Iron and Copper Proteins. Advances in Experimental Medicine and Biology, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3270-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3270-1_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3272-5

  • Online ISBN: 978-1-4684-3270-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics