Skip to main content

Evidence for A Synthesis-Dependent Release of GABA

  • Chapter
  • First Online:
Transport Phenomena in the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 69))

Abstract

The control of neuronal activity through synaptic inhibitory mechanisms in the central nervous system (CNS) is presently well established3, 7, 29, 41. This kind of regulatory mechanism implies that the activity of neurons is controlled by the degree of the inhibition exerted upon them by other neurons. This means that a given neuron will fire when the inhibitory action of the controlling neuron decreases, that is, through disinhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, E.D., and Iversen, L.L., Huntington#x0027;s chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyl- transferase and dopamine in basal ganglia. Brain, 97 (1974) 457–472.

    Article  CAS  Google Scholar 

  2. Chakrin, L.W., Marchbanks, R.M., Mitchell, J.F., and Whittaker, V.P., The origin of the acetylcholine released from the surface of the cortex, J. Neurochem., 19 (1972) 2727–2736.

    Article  CAS  Google Scholar 

  3. Grain, S.M., and Bornstein, M.B., Early onset in inhibitory functions during synaptogenesis in fetal mouse brain cultures. Brain Research, 68 (1974) 351–357.

    Article  Google Scholar 

  4. Curtis, D.R., Duggan, A.W., Felix, D., and Johnston, G.A.R., GABA, bicuculline and central inhibition. Nature, 226 (1970) 1222–1224.

    Article  ADS  CAS  Google Scholar 

  5. Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R., and McLennan, H., Antagonism between bicuculline and GABA in the cat brain. Brain Research, 33 (1971) 57–73.

    Article  CAS  Google Scholar 

  6. Curtis, D.R., and Johnston, G.A.R., Amino acid transmitters. In A. Lajtha (Ed.), Handbook of Neurochemistry, Plenum Press, New York, 1970, Vol. 4, pp. 115–134.

    Google Scholar 

  7. Eccles, J.C., Excitatory and inhibitory mechanisms in brain. In H.H. Jasper, A.A. Ward, and A. Pope (Eds.), Basic Mechanisms of the Epilepsies, Little, Brown and Co., Boston, 1969, pp. 229–252.

    Google Scholar 

  8. Fonnum, F., The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea pig brain, Biochem. J., 106 (1968) 401–412.

    Article  CAS  Google Scholar 

  9. Fonnum, F., Review of recent progress in the synthesis, storage, and release of acetylcholine. In P.G. Waser (Ed.), Cholinergic Mechanisms, Raven Press, New York, 1975, pp. 145–159.

    Google Scholar 

  10. Fonnum, F., Storm-Mathisen, J., and Walberg, F., Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Research, 20 (1970) 259–275.

    Article  CAS  Google Scholar 

  11. Glowinski, J., Besson, M.J., Cheramy, A., and Thierry, A.M., Disposition and role of newly synthesized amines in central catecholaminergic neurons. Adv. Biochem. Psychopharmacol., 6, 93–109.

    Google Scholar 

  12. Hill, R.G., Simmonds, M.A., and Straughan, D.W., Antagonism of GABA by Picrotoxin in the feline cerebral cortex, Brit. J. Pharmacol., 44 (1972) 807–809.

    Article  CAS  Google Scholar 

  13. Horton, R.W., and Meldrum, B.S., Seizures induced by allyglycine, 3-mercaptopropionic acid and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glutamic acid decarboxylase, Brit. J. Pharmacol., 49, 52–63.

    Google Scholar 

  14. Iversen, L.L., The uptake, storage, release, and metabolism of GABA in inhibitory nerves. In S.H. Snyder (Ed.), Perspectives in Neuropharmacology, Oxford University Press, New York, 1972 pp. 75–111. 3

    Google Scholar 

  15. Iversen, L.L., and Bloom, F.E., Studies on the uptake of T.. hH GABA and C H] glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Research, 41 (1972) 131–143.

    Article  CAS  Google Scholar 

  16. Iversen, L.L., and Neal, M.J., The uptake of [3H]-GABA by slices of rat cerebral cortex, J. Neurochem., 15 (1968) 1141–1149.

    Article  CAS  Google Scholar 

  17. Johnston, G.A.R., and Mitchell, J.F., The effect of bicuculline, Metrazol, Picrotoxin and strychnine on the release of [3H] GABA from rat brain slices, J. Neurochem., 18 (1971) 2441–2446.

    Article  CAS  Google Scholar 

  18. Rrnjevicf, K., Chemical nature of synaptic transmission in vertebrates, Physiol. Rev., 54 (1974) 418–540.

    Google Scholar 

  19. McLaughlin, B.J., Wood, J.G., Saito, K., Barber, R., Vaughn, J.E., Roberts, E., and Wu, J.-Y., The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Research, 76 (1974) 377–391.

    Article  CAS  Google Scholar 

  20. Meldrum, B.S., and Horton, R.W., Convulsive effects of 4-deoxypyridoxine and of bicuculline in photosensitive baboons (Papio papio) and in rhesus monkeys (Macaca mulatta), Brain Research, 35 (1971) 419–436.

    Article  CAS  Google Scholar 

  21. Molenaar, P.C., Nickolson, V.J., and Polak, R.L., Preferential release of newly synthesized %-acetylcholine from rat cerebral cortex slices in vitro, Brit. J. Pharmacol., 47 (1973) 97–108.

    CAS  Google Scholar 

  22. Molenaar, P.C., Polak, R.L., and Nickolson, V.J., Subcellular localization of newly-formed [3H] acetylcholine in rat cerebral cortex in vitro, J. Neurochem., 21 (1973) 667–678.

    Article  CAS  Google Scholar 

  23. Mulder, A.H., and Snyder, S.H., Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat. Brain Research, 76 (1974) 297–308.

    Article  CAS  Google Scholar 

  24. Neal, M.J., and Iversen, L.L., Subcellular distribution of endogenous and [3H]nlnobutyric acid in rat cerebral cortex, J. Neurochem., 16 (1969) 1245–1252.

    Article  CAS  Google Scholar 

  25. Pérez De La Mora, M., Feria-Velasco, A., and Tapia, R., Pyridoxal phosphate and glutamate decarboxylase activity in subcellular particles of mouse brain and their relationship to convulsions, J. Neurochem., 20 (1973) 1575–1587.

    Article  Google Scholar 

  26. Perez De La Mora, M., and Tapia, R., Anticonvulsant effect of 5-ethyl, 5-phenyl, 2-pyrrolidinone and its possible relationship to γ-aminobutyric acid-dependent inhibitory mechanisms, Biochem. Pharmacol., 22 (1973) 2635–2639.

    Article  Google Scholar 

  27. Salganicoff, L., and De Robertis, E., Subcellular distribution of the enzymes of the glutamic acid, glutamine and y-aminobutyric acid cycles in rat brain, J. Neurochem., 12 (1965) 287–309.

    Article  CAS  Google Scholar 

  28. Sandoval, M.E., and Tapia, R., GABA metabolism and cerebral protein synthesis. Brain Research, 96 (1975) 279–286.

    Article  CAS  Google Scholar 

  29. Spencer, W.A., and Kandel, E.R., Synaptic inhibition in seizures. In H.H. Jasper, A.A. Ward, and A. Pope (Eds.), Basic Mechanisms of the Epilepsies, Little, Brown and Co., Boston, 1969, pp. 579–603.

    Google Scholar 

  30. Srinivasan, V., Neal, M.J., and Mitchell, J.F., The effect of electrical stimulation and high potassium concentrations on the efflux of γ-aminobutyric acid from brain slices, J. Neurochem., 16 (1969) 1235–1244.

    Article  CAS  Google Scholar 

  31. Tapia, R., The role of γ-aminobutyric acid metabolism in the regulation of cerebral excitability. In R.D. Myers and R.R. Drucker-Colin (Eds.), Neurohumoral Coding of Brain Function, Plenum Press, New York, 1974, pp. 3–26.

    Chapter  Google Scholar 

  32. Tapia, R., Biochemical pharmacology of GABA in CNS. In L.L. Iversen, S.D. Iversen and S.H. Snyder (Eds.), Handbook of Psychopharmacology, Plenum Press, New York, 1975, Vol. 4, pp. 1–58.

    Google Scholar 

  33. Tapia, R., and Awapara, J., Formation of γ-aminobutyric acid (GABA) in brain of mice treated with L-glutamic acid-γ-hydrazide and pyridoxal phosphate-γ-glutamyl hydrazone, Proc. Soc. Exp. Biol. Med., 126 (1967) 218–221.

    Article  CAS  Google Scholar 

  34. Tapia, R., and Pasantes, H., Relationships between pyridoxal phosphate availability, activity of vitamin B6-dependent enzymes and convulsions. Brain Research, 29 (1971) 111–122.

    Article  CAS  Google Scholar 

  35. Tapia, R., Pasantes, H., Pérez De La Mora, M., Ortega, B.G., and Massieu, G.H., Free amino acids and glutamate decarboxylase activity in brain of mice during drug-induced convulsions, Biochem. Pharmacol., 16 (1967) 483–496.

    Article  CAS  Google Scholar 

  36. Tapia, R., Pérez De La Mora, M., and Massieu, G.H., Correlative changes of pyridoxal kinase, pyridoxal-5#x0027;-phosphate and glutamate decarboxylsse in brain, during drug-induced convulsions, Ann. N.Y. Acad. Sei., 166 (1969) 257–266.

    Article  ADS  CAS  Google Scholar 

  37. Tapia, R., Sandoval, M.E., and Contreras, P., Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability, J. Neurochem., 24 (1975) 1283–1285.

    Article  CAS  Google Scholar 

  38. Tews, J.K., Carter, S.H., Roa, P.D., and Stone, W.E., Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by Picrotoxin and by pentylenetetrazol, J. Neurochem,, 10 (1963) 641–653.

    Article  CAS  Google Scholar 

  39. Thierry, A.M., Blanc, G., and Glowinski, J., Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brain stem of the rat, J. Neurochem., 18 (1971) 449–461.

    Article  CAS  Google Scholar 

  40. Urquhart, N., Perry, T.L., Hansen, S., and Kennedy, J., GABA content and glutamic acid decarboxylase activity in brain of Huntington#x0027;s chorea patients and control subjects, J. Neurochem. 24 (1975) 1071–1075.

    Article  CAS  Google Scholar 

  41. Von Euler, C., Skoglund, S., and Söderberg, U. (Eds.), Structure and Function of Inhibitory Neuronal Mechanisms, Pergamon Press, Oxford, 1968, 563 p.

    Google Scholar 

  42. Wood, J.D., The role of γ-aminobutyric acid in the mechanism of seizures, Progr. Neurobiol., 5 (1975) 77–95.

    CAS  Google Scholar 

  43. Wood, J.Do, and Peesker, S.J., The effect on GABA metabolism in brain of isonicotonic acid hydrazide and pyridoxine as a function of time after administration, J. Neurochem., 19 (1972) 1527–1537.

    Article  CAS  Google Scholar 

  44. Wood, J.D., and Peesker, S.J., The role of GABA metabolism in the convulsant and anticonvulsant actions of aminooxyacetic acid, J. Neurochem., 20 (1973) 379–387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Tapia, R. (1976). Evidence for A Synthesis-Dependent Release of GABA. In: Levi, G., Battistin, L., Lajtha, A. (eds) Transport Phenomena in the Nervous System. Advances in Experimental Medicine and Biology, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-3264-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3264-0_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-3266-4

  • Online ISBN: 978-1-4684-3264-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics