Skip to main content

Mechanisms of Transport for the Uptake and Release of Biogenic Amines in Nerve Endings

  • Chapter
  • First Online:
Transport Phenomena in the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 69))

Abstract

Reports on the amine transport mechanism located at the plasma membrane of nerve endings have been extensively reviewed for general characteristics 30, 31, 49, and for the effects of electrolytes 46. The nerve ending is uncommon, or unique in the sense that the product of secretion is recaptured almost immediately by the secretory organ. Transport, therefore, may be a bidirectional phenomenon in nerve endings. As a result of investigations, a synaptic sub-unit is envisaged in which electrolytes play an important role in the mobilization of amine as well as for transport in both directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berti, F., and Shore, P.A., A kinetic analysis of drugs that inhibit the adrenergic neuronal membrane amine pump. Biochem. Pharmacol. 16 (1967) 2091–2094.

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn, K.S., French, P.C., and Merrills, R.J., 5-hydroxy- tryptamine uptake by rat brain vitro. Life Sci. 6 (1967) 1653

    Article  CAS  PubMed  Google Scholar 

  3. Blaszkowski, T.P., and Bogdanski, D.F., Possible role of sodium and calcium ions in retention and physiological release of norepinephrine by adrenergic nerve endings. Biochem. Pharmacol., 20 (1971) 3281–3294.

    Article  CAS  PubMed  Google Scholar 

  4. Blaszkowski, T.P., and Bogdanski, D.F., Evidence for sodium dependent outward transport of the 3H-norepinephrine mobilized by calcium at the adrenergic synapse. Inhibition of transport by desipramine. Life Sci. II, Part I (1972) 867–876.

    Article  Google Scholar 

  5. Bogdanski, D.F., and Blaszkowski, T.P., Role of extravesicular adenosine triphosphate and apparent vesicular energy conservation reactions in retention of norepinephrine by adrenergic nerve endings. Neuropharmacol. 14 (1975) 11–20.

    Article  CAS  Google Scholar 

  6. Bogdanski, D.F., Blaszkowski, T.P., and Tissari, A.H., Mechanisms of biogenic amine transport and storage IV. Relationship between K+ and the Na+ requirement for transport and storage of 5-hydroxytryptamine and norepinephrine in synaptosomes. Biochim. Biophys. Acta. 211 (1970) 521–532.

    Article  CAS  PubMed  Google Scholar 

  7. Bogdanski, D.F., and Brodie, B.B., Role of sodium and potassium ions in storage of norepinephrine by sympathetic nerve endings. Life Sci. 5 (1966) 1563–1569.

    Article  CAS  PubMed  Google Scholar 

  8. Bopdanski, D.F., and Brodie, B.B., The effects of inorganic ions on the storage and uptake of % norepinephrine by rat heart slices. J. Pharmacol. Exp. Ther. 165 (1969) 181–189.

    Google Scholar 

  9. Bogdanski, D.F., Tissari, A.H., and Brodie, B.B., Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci. 7 (1968) 419–428.

    Article  CAS  PubMed  Google Scholar 

  10. Bogdanski, D.F., Tissari, A.H., and Brodie, B.B., Mechanism of transport and storage of bipgenic amines. III. Effects of sodium and potassium on kinetics of 5-hydroxytryptamine and norepinephrine transport by rabbit synaptosomes. Biochim. Biophys. Acta 219 (1970) 189–199.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, G.L., The Croonian Lecture, 1964. The release and fate of the transmitter liberated by adrenergic nerves. Proc. Roy. Soc. B. 162 (1965) 1–19.

    ADS  Google Scholar 

  12. Boullin, D.J. Quoted by Costa, E. Interaction of drugs with adrenergic neurons. Pharm. Rev., 18 (1966) 577–597.

    PubMed  Google Scholar 

  13. Chang, P., Euler, U.S. von, and Lishajko, F., Effects of 2,4- dinitrophenol on release and uptake of noradrenaline in guinea pig heart. Acta Phys. Scand. 85 (1972) 501–505.

    Article  CAS  Google Scholar 

  14. Colburn, R.W., Goodwin, F.K., Murphy, D.L., Bunney, W.E.,Jr., and Davis, J.M., Quantitative studies of norepinephrine uptake by synaptosomes. Biochem. Pharmacol. 17 (1968) 957–964.

    Article  CAS  PubMed  Google Scholar 

  15. Coyle, J.T., and Snyder, S.H., Catecholamine uptake by synaptosomes in homogenates of rat brain: Stereo-specificity in different areas. J. Pharmacol. Exp. Ther. 170 (1969) 221–231.

    CAS  PubMed  Google Scholar 

  16. Crane, R.K., Na+dependent transport in the intestine and other animal tissues. Fed. Proc. 24 (1965) 1000–1006.

    CAS  PubMed  Google Scholar 

  17. Douglas, W.W., and Rubin, R.P., The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J.Physiol. Lond. 159 (1961) 40–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eddy, A.A., and Hogg, M.C., Further observations on the inhibitory effect of extracellular potassium ions on the uptake of glycine by mouse ascites tumour cells. Biochem. J. 114 (1969) 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Escueta, A.V., Appel, S.H., The effects of electroshock seizures on potassium transport within synaptosomes from rat brain. J. of Neurochem. 19 (1972) 1625–1638.

    Article  CAS  Google Scholar 

  20. Gage, P.W., and Quastel, D.M.J., Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junction. J. Physiol. Lond. 185 (1966) 95–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia, A.G., and Kirpekar, S.M., Release of noradrenaline from the cat spleen by sodium deprivation. Br. J. Pharmacol. 47 (1973) 729–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gillis, C.N., and Paton, D.M., Cation dependence of sympathetic transmitter retention by slices of rat ventricle. Br. J. Pharmacol. Chemether. 29 (1967) 309–318.

    Article  CAS  Google Scholar 

  23. Goldner, A.M., Schultz, S.G., and Curran, P.F., Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. Gen. Physiol. 53 (1969) 362–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Green, R.D. III, and Miller, J.W., Evidence for the active transport of epinephrine and norepinephrine by the uterus of the rat. J. Pharmacol. Exp. Ther. 152 (1966) 42–50.

    CAS  PubMed  Google Scholar 

  25. Harris, J.E., and Baldessarini, R.J., The uptake of 3H-dopainine by homogenates of rat corpus striatum: effects of cations. Life Sci. 13 (1973) 303–312.

    Article  CAS  PubMed  Google Scholar 

  26. Heinz, E. (Ed.) Na-linked transport of organic solutes. Springer- Verlag, Berlin, 1972.

    Google Scholar 

  27. Hitzemann, B.A., Hitzemann, R.J., and Loh, H.H., On the specificity of trypsin (EC 3.4.4.4) of nerve ending particles to inhibit norepinephrine transport. J. Neurochem. 24 (1975) 323–330.

    Article  CAS  PubMed  Google Scholar 

  28. Holz, R.W., and Coyle, J.T., The effects of various salts, temperature and the alkaloids veratridine and batrachotoxin on the uptake of [3H]-dopamine into synaptosomes from rat striatum. Mol. Pharmacol. 10 (1974) 746–758.

    CAS  Google Scholar 

  29. Iversen, L.L., The uptake of noradrenaline by the isolated perfused rat heart. Br. J. Pharmacol. 21 (1963) 523–537.

    CAS  Google Scholar 

  30. Iversen, L.L., The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, New York, 1967.

    Google Scholar 

  31. Iversen, L.L., Neuronal uptake processes for amines and amino acids. In E. Costa and E. Giacobini (Eds.), Advances in Biochemical Psychopharmacology 2 (1970) 109–132.

    Google Scholar 

  32. Iversen, L.L., and Kravitz, E.A., Sodium dependence of transmitter uptake at adrenergic nerve terminals. Mol. Pharmacol. 2 (1966) 360–362.

    CAS  PubMed  Google Scholar 

  33. Keen, P., and Bogdanski, D.F., Sodium and calcium ions in uptake and release of norepinephrine by nerve endings. Am. J. Physiol. 219 (1970) 677–682.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, C.O., and Armstrong, W. McD., Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175 (1972) 1261–1264.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Ling, C.M., and Abdel-Latif, A.A., Studies on sodium transport in rat brain nerve ending particles. J. Neurochem. 15 (1968) 721–729.

    Article  CAS  PubMed  Google Scholar 

  36. Ling, G.N., and Ochsenfeld, M.M., Mobility of potassium ion in frog muscle cells, both living and dead. Science 181 (1973) 78–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Maxwell, R.A., Keenan, P.D., Chaplin, E., Roth, B., Batmanglidje, S., Eckhardt, S., Molecular features affecting the potency of tricyclic antidepressants and structurally related compounds as inhibitors of the uptake of tritiated norepinephrine by rabbit, aortic strips. J. Pharmacol. Exp. Therap. 166 (1969) 320–329.

    CAS  Google Scholar 

  38. Paton, D.M., Cation and metabolic requirements for retention of metaraminol by rat uterine horns. Br. J. Pharmacol. Chemotherap. 33 (1968) 277–286.

    Article  CAS  Google Scholar 

  39. Pietryzk, C., and Heinz, E., The sequestration of Na+, K+ and Cl- in the cellular nucleus and its energetic consequences for the gradient hypotheses of amino acid transport in Ehrlich cells. Biochim. Biophys. Acta. 352 (1974) 397–411.

    Google Scholar 

  40. Riggs, T.R., Walker, L.M., Christensen, H.N., Potassium migration and amino acid transport. J. Biol. Chem. 233 (1958) 1479–1484.

    CAS  PubMed  Google Scholar 

  41. Schuberth, J., and Sundwall, A., Effects of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14 (1967) 807–812.

    Article  CAS  Google Scholar 

  42. Schultz, S.G., and Curran, P.F., Coupled transport of sodium and organic solutes. Physiol. Rev. 50 (1970) 637–718.

    Article  CAS  PubMed  Google Scholar 

  43. Sugrue, M.F., and Shore, P.A., The mode of sodium dependency of the adrenergic neuron amine carrier. Evidence for a second, sodium dependent, optically specific and reserpine sensitive system. J. Pharmacol Exp. Therap. 170 (1969) 239–245.

    CAS  Google Scholar 

  44. Sugrue, M.F., and Shore, P.A., Further evidence for a sodium- dependent, optically specific and reserpine-sensitive amine carrier mechanism at the adrenergic neuron. J. Pharmacol. Exp. Therap. 177 (1971) 389–397.

    CAS  Google Scholar 

  45. Tissari, A.H., and Bogdanski, D.F., Biogenic amine transport. VI. Comparison of the effects of ouabain and K+ deficiency on the transport of 5-hydroxytryptamine and norepinephrine by synaptosomes. Pharmacology 5 (1971) 225–234.

    Article  CAS  PubMed  Google Scholar 

  46. Tissari, A.H., and Bogdanski, D.F., Effects of inorganic electrolytes on the membrane transport and metabolism of serotonin and norepinephrine by synaptosomes. In O. Eränkö (Ed.), Progress in Brain Research, Elsevier Publishing Co., Amsterdam, 1971, (34) pp. 292–302.

    Google Scholar 

  47. Tissari, A.H., Schönhöffer, P.S., Bogdanski, D.F., and Brodie, B.B. Mechanism of biogenic amine transport.II. Relationship between sodium and the mechanism of ouabain blockade of the accumulation of serotonin and norepinephrine by synaptosomes. Mol. Pharm. 5 (1969) 593–604.

    CAS  Google Scholar 

  48. Tissari, A.H., and Suurhasko, R.U.A., Transport of 5-HT in synaptosomes of developing rat brain. Acta Pharmacol.et Toxicol. 29, Suppl. 4 (1971) 59.

    Google Scholar 

  49. Titus, E.G., and Dengler, H.J., The mechanism of uptake of norepinephrine. Pharmacol. Rev. 18, Part I (1966) 525–535.

    CAS  PubMed  Google Scholar 

  50. Vidaver, G.A., Glycine transport by hemolyzed and restored pigeon red cells. Biochemistry 3 (1964) 795–799.

    Article  CAS  PubMed  Google Scholar 

  51. Vidaver, G.A., Transport of glycine by pigeon red cells. Biochemistry 3 (1964) 662–667.

    Article  CAS  PubMed  Google Scholar 

  52. White, T.D., and Keen, P., The role of internal and external Na+ and K+ on the uptake of [3H] noradrenaline by synaptosomes prepared from rat brain. Biochim. Biophys. Acta 196 (1968) 285–295.

    Article  Google Scholar 

  53. White, T.D., and Keen, P., Effect of inhibitors of (Na+ + K+)- dependent adenosine triphosphatase on the uptake of norepinephrine by synaptosomes. Mol. Pharmacol. 7 (1971) 40–45.

    CAS  PubMed  Google Scholar 

  54. White, T.D., and Paton, D.M., Effects of external Na+ and K+ on the initial rates of noradrenaline uptake by synaptosomes prepared from rat brain. Biochim. Biophys. Acta 266 (1972) 116–127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Bogdanski, D.F. (1976). Mechanisms of Transport for the Uptake and Release of Biogenic Amines in Nerve Endings. In: Levi, G., Battistin, L., Lajtha, A. (eds) Transport Phenomena in the Nervous System. Advances in Experimental Medicine and Biology, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-3264-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3264-0_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-3266-4

  • Online ISBN: 978-1-4684-3264-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics