Evolutionary Divergence of Immunoglobulin Constant Region Genes

  • J. Michael Kehoe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 64)


The development of the humoral immune response over evolutionary time has resulted in the occurrence of numerous immunoglobulin gene products in animal serum. The variable region gene products which are now known to be responsible for providing the distinct combining specificities that are required for interacting with the multitude of antigens a given individual encounters in its lifetime (1) are of obvious importance in this regard. Genetic complexity also exists on another level in the humoral response, however, albeit less pronounced. This complexity is presented at the level of constant region genes. The precise extent of this diversity is not yet clear, especially in any complete phylogenetic context since extensive information concerning the question is available at present only for higher species, particularly mammals. While this information has provided much knowledge regarding the extent of constant region diversity in these higher species, and may show us the highest degree of such divergence that has yet occurred in the biological world, the data obviously can speak only for a limited spectrum of the animal kingdom.


Horseshoe Crab Constant Region Amino Acid Sequence Analysis Myeloma Protein Immunoglobulin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edelman, G. M. and Gall, W.E., Ann. Rev. Biochem. 38:415 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    Kabat, E. A. and Mayer, M. M., Experimental Immunochemistry (Thomas, Springfield, Illinois, 1961).Google Scholar
  3. 3.
    Ishizaka, K., Ishizaka, T., and Hornbrook, M. M., J. Immunol. 97:840 (1966).PubMedGoogle Scholar
  4. 4.
    Steiner, L. A., et al., this volume.Google Scholar
  5. 5.
    Natvig, J. B. and Kunkel, H. G., Adv. Immunol. 16:1 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    Kehoe, J. M., Hurvitz, A. I., and Capra, J. D., J. Immunol. 109:511 (1972).PubMedGoogle Scholar
  7. 7.
    Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., and Waxdal, M., Proc. Nat. Acad. Sci. U.S. 63:78 (1969).CrossRefGoogle Scholar
  8. 8.
    Chuang, C., Capra, J. D., and Kehoe, J. M., Nature 244:158 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    Pink, J. R. L., Buttery, S. H., DeVries, G. M., and Milstein, C., Biochem. J. 117:33 (1970).PubMedGoogle Scholar
  10. 10.
    Kehoe, J. M., Bourgois, A., Capra, J. D., and Fougereau, M., Biochemistry 13:2499 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    Hill, R. L., Delaney, R., Fellows, R. E., and Lebovitz, H. E., Proc. Nat. Acad. Sci. 55:1762 (1966).CrossRefGoogle Scholar
  12. 12.
    Tracey, D. E. and Cebra, J. J., Biochemistry 13:4796 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    Atwell, J. L. and Marchalonis, J. J., J. Immunogen. 1:367 (1975).CrossRefGoogle Scholar
  14. 14.
    Cohen, E., editor, Ann. N.Y. Acad. Sci. 234:1 (1974).Google Scholar
  15. 15.
    Cohen, E., this volume.Google Scholar
  16. 16.
    Marchalonis, J. J. and Edelman, G. M., J. Mol. Biol. 32:453 (1968).CrossRefGoogle Scholar
  17. 17.
    Finstad, C. L., Litman, G. W., Finstad, J., and Good, R. A., J. Immunol. 108:1704 (1972).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • J. Michael Kehoe
    • 1
  1. 1.Department of Microbiology, Mount Sinai Medical Center of the CityUniversity of New YorkNew YorkUSA

Personalised recommendations