Adenyl Cyclase and the Cyclic AMP Responsive Systems in the Uterus

  • Stanley G. Korenman
  • Barbara M. Sanborn
  • Ramesh C. Bhalla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 36)


Thus far in this symposium, we have been treated to a detailed, thoughtful and elegant presentation of the current status of the steroid hormone responsive systems in various tissues. The role of the adenyl cyclase system in steroid hormone target tissues has received far less attention (1–3) so we initiated studies both to define its role in uterine function and ultimately to determine whether there is an interaction with the steroid responsive system. The uterus seemed like an ideal subject tissue for such studies because it serves as the target for a variety of hormones, including oligopeptides, biogenic amines and steroids.


Adenyl Cyclase cAMP Dependent Protein Kinase Scatchard Plot Association Rate Constant Adenyl Cyclase System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szego, C.M., and Davis, J.S. :Adenosine 3,5 ’-monophosphate in rat uterus: Acute elevation “by estrogen.” Proc. Natl. Acad. Sci. U.S., 58: 1711 (1967).CrossRefGoogle Scholar
  2. 2.
    Szego, C.M., and Davis, J.S.:Inhibition of estrogen-induced elevation of cyclic 3–5′-adenosine monophosphate in uterus. I. By “beta-adrenergic receptor-blocking drugs.” Mol. Pharmacol., 5: 470 (1969).PubMedGoogle Scholar
  3. 3.
    Rosenfeld, M.G., and O“Malley, B.W.:Steroid hormones: Effects on adenyl cyclase activity and adenosine 3’,5’-monophosphate in target tissues.” Science,l68: 253, 1970.CrossRefGoogle Scholar
  4. 4.
    Raz. S., Zeigler, M., and Adoni, A.:“Hormonal environment and uterine response to epinephrine.” Amer. J. Obstet. Gynec,111; 345, 1971.PubMedGoogle Scholar
  5. 5.
    Butcher, R.W., Ho, R.J., Meng, H.C.S., and Sutherland, E.W.:“Adenosine 3’,5’-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine.” J. Biol. Chem.,240: 4515, 1965.PubMedGoogle Scholar
  6. 6.
    Dobbs, J.W., and Robison, G.A.:“Functional biochemistry of beta receptors in the uterus.” Fed. Proc, 27: 352, 1968.Google Scholar
  7. 7.
    Triner, L., Overweg, N.I.A., Hiatt, R.B., and Nahas, G.G.:“The regulation of uterine contractions by catecholamines.” Physiologist, 12: 377, 1969.Google Scholar
  8. 8.
    Karim, S.M.M., Hillier, K., Trussell, R.R., Patel, R.C., and Tamusange, J.:“Induction of labour with prostaglandin E.” J. Obstet. Gynec. Brit. Comm., 77: 200, 1970.CrossRefGoogle Scholar
  9. 9.
    Harbon, S., and Clauser, H.:Cyclic adenosine 3’,5’-monophosphate levels in rat myometrium under the influence of epinephrine, prostaglandins and oxytocin. Correlations with uterus motility. Biochem. Biophys. Res. Comm., 44:1496, 1971.PubMedCrossRefGoogle Scholar
  10. 10.
    Mitznegg, P., Heim, F., and Meythaler, B.:“Influence of endogenous and exogenous cyclic 3’,5’-AMP on contractile responses induced by oxytocin and calcium in isolated rat uterus.” Life Sci., 9: 121, 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Triner, L., NahasG.GVulliemoz, Y.,Overweg, N.I.A., Verosky, M., Haliif, D.V., and Ngai, S.H.:“Cyclic AMP and smooth muscle function.” Ann.N.Y.Acad.Sci.,185: U58, 1971.CrossRefGoogle Scholar
  12. 12.
    Hechter, O., Yoshinaga, K., Halkerston, I.D.K., and Birchall, K.:“Estrogen-like anabolic effects of cyclic 3’,5’-adenosine monophosphate and other nucleotides in isolated rat uterus.” Arch. Biochem. Biophys.,122: 449, 1967.PubMedCrossRefGoogle Scholar
  13. 13.
    Griffin. D.M., and Szego, C.M.:“Adenosine 3’,5’-monophosphate stimulate of uterine amino acid uptakein vitro.” Life Sci., 7(H): 1017, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    Sharma, S.K., and Talwar, G.P.:“Action of cyclic adenosine 3’, 5’-adenosine monophosphate and other nucleotides in isolated rat uterus.” Arch. Biochem. Biophys.,122: 449, 1967.CrossRefGoogle Scholar
  15. 15.
    Singhal, R., and Lafreniere, R.:“Induction of uterine phosphofructokinase by cyclic 3’,5’-adenosine monophosphate.” Endocrinology, 87: 1099, 1970.PubMedCrossRefGoogle Scholar
  16. 16.
    Singhal, R.L., and Lafreniere, R.P.:“Metabolic control mechanisms in mammalian systems: XV. Studies on the role of adenosine 3’,5’-monophosphate in estrogen action on the uterus” J. Pharmacol. Exp. Ther.,l80: .86, 1972.Google Scholar
  17. 17.
    Sanborn, B.M., Bhalla, R.C., and Korenman, S.G.:“Use of a modified radioligand assay to measure the effect of estradiol on uterine adenosine 3’,5’-cyclic monophosphate” Endocrinology 92:494, 1973.PubMedCrossRefGoogle Scholar
  18. 18.
    Bhalla, R.C., Sanborn, B.M., and Korenman, S. G.:“Hormonal interactions in the uterus: Inhibition of isoproterenol-induced accumulation of adenosine 3’, 5’-cyclic monophosphate by oxytocin and prostaglandins” Proc. Natl. Acad. Sci. U.S.A., 69: 3761, 1972.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanborn, B. M., Bhalla, R. C., and Korenman, S. G. :“The endometrial cAMP dependent protein kinase: Distribution, subunit structure, and kinetics of cAMP binding” Jrnl. Bio. Chem., June, 1973, (in press).Google Scholar
  20. 20.
    Walton, G.M., and Garren, L.D.:“An assay for adenosine 3’5’cyclic monophosphate based on the association of the nucleotide with a partially purified binding protein” Biochemistry, 9j 4223, 1970.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuo, J.F., and Greengard, P.:“Cyclic nucleotide-dependent protein kinases. VIII. Assay method for the measurement of adenosine 3’,5’-monophosphate in various tissues and a study of agents influencing its level in adipose cells” J. Biol. Chem.,245: 4067 ,1970.PubMedGoogle Scholar
  22. 22.
    Krishna, G., Weiss, B., and Brody, B.:“A simple sensitive method for the assay of adenyl cyclase” J. Pharmacol. Exp. Ther.,163: 379, 1968.PubMedGoogle Scholar
  23. 23.
    Jensen, E.V., DeSombre, E.R., and Jungblut, P.W.:“Interaction of estrogens with receptor sites Invivoand invitro” Excerpta Medica International Congress Series #132, Proc. Second Int. Cong, on Hormonal Steroids, Milan, May, 1966, p. 492.Google Scholar
  24. 24.
    Katzenellenbogen, B., and Gorski, J.:“Estrogen actionin vitro: Induction of the synthesis of a specific uterine protein” J. Biol. Chem., 247_: 1299, 1972.PubMedGoogle Scholar
  25. 25.
    Pharriss, B.B., and Wyngarden, L.J.:The effect of prostaglandin F2ü on the progestrogen content of ovaries from pseudo-pregnant rats.: Proc. Soc. Exp. Biol. Med.,130: 92, 1969.PubMedGoogle Scholar
  26. 26.
    Kuehl, F.A., Jr., Humes, J.L., Tarnoff, J., Cirillo, V.J., and Ham, E.A.:“Prostaglandin receptor site: Evidence for an essential role in the action of luteinizing hormone” Science,109: 883, 1970.CrossRefGoogle Scholar
  27. 27.
    McCracken, J.:Prostaglandin F2ü and corpus luteum regression.’ Ann. N.Y. Acad. Sci.,180: 456, 1971.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuehl, F.A., Jr., and Ham. E.A.:“Prostaglandin antagonists: Studies on the mode of action of polyphloretin phosphate” Biochem. Biophys. Res. Comm., 44: l464, 1971.CrossRefGoogle Scholar
  29. 29.
    Marsh, J.:“The effect of prostaglandins on the adenyl cyclase of the bovine corpus luteum” Ann. N.Y. Acad. Sci.,l80: 4l6, 1971.Google Scholar
  30. 30.
    Wolff, J., and Jones, A.B.:“The purification of bovine thyroid plasma membranes and the properties of membrane-bound adenyl cyclase.”J. Biol. Chem., 246 : 3939, 1971.PubMedGoogle Scholar
  31. 31.
    Sato, S., Szabo, M., Kowalski, K., and Burke, G.:“Role of prostaglandin in thyrotropin action on thyroid” Endocrinology, 90: 343, 1972.PubMedCrossRefGoogle Scholar
  32. 32.
    Butcher, R.W., and Baird, C.E.:“Effects of prostaglandins on adenosine 3’,5’-monophosphate levels in fat and other tissues” J. Biol. Chem.,243: 1713, 1968.PubMedGoogle Scholar
  33. 33.
    Butcher, R.W., and Baird, C.E.:“The relationship of prostaglandins and cyclic AMP levels.” Prostaglandin Symposium of the Worcestor Foundation for Experimental Biology. P.W. Ramwell and J.E. Shaw, eds., Interscience, N.Y., pp. 42–48, 1967.Google Scholar
  34. 34.
    Reimann, E.M., Brostrom, C.O., Corbin, J.D., King, C.A., and Krebs, E.G.:“Separation of regulatory and catalytic subunits of the cyclic 3’,5,-adenosine monophosphate-dependent protein kinases(s) of rabbit skeletal muscle” Biochem. Biophys. Res. Commun., 42: 187, 1971.PubMedCrossRefGoogle Scholar
  35. 35.
    Rubin, C.S., Erlichman, J., and Rosen, O.M.:“Molecular forms and subunit composition of a cyclic adenosine 3’,5’-monophosphate-dependent protein kinase purified from bovine heart muscle” J. Biol. Chem., 247.: 36, 1972.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Stanley G. Korenman
    • 1
  • Barbara M. Sanborn
    • 1
  • Ramesh C. Bhalla
    • 1
  1. 1.Division of Endocrinology, Department of Internal MedicineUniversity of Iowa School of Medicine and the Veterans Administration HospitalIowa CityUSA

Personalised recommendations