Advertisement

Red Cell Metabolism and Oxygen Affinity of Healthy Individuals During Exposure to High Altitude

  • M. Rorth
  • S. F. Nygaard
  • H. H. Parving
Chapter
  • 139 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)

Abstract

In man adaptation of oxygen transport to low ambient pO2 comprises a series of physiological responses, including increases in ventilation, cardiac output, and oxygen carrying capacity (hemoglobin concentration). The increase in ventilation is generally considered to be the most responsive and effective of these. A fourth adaptive mechanism which involves changes in oxygen affinity of circulating red cells has been focused on recently (Astrup et al, 1968; Lenfant et al, 1968). Theoretically, a decrease in red cell affinity for oxygen will facilitate oxygenation of the tissues and an increased amount of oxygen will be released from the red cells at a given pO2. However, oxygen uptake by the red cells in the lungs may be impaired. A decrease in red cell affinity for oxygen is beneficial for the total oxygen transport only when the arterial oxygen saturation is greater than 70%.

Keywords

High Altitude Pentose Phosphate Pathway Oxygen Affinity Human Hemoglobin Glycolytic Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup, P., Rorth, M., Mellemgaard, K., Lundgren, C., and Mulhausen, R. O. (1968). Changes of oxygen affinity of blood at altitude and depth. Lancet ii:732.CrossRefGoogle Scholar
  2. Astrup, P., Rorth, M., and Thorshauge, C. (1970). Dependency on acid-base status of oxyhemoglobin dissociation and 2,3 diphosphoglycerate level in human erythrocytes. Scand. J. Clin. Lab. Invest. 26: 47.PubMedCrossRefGoogle Scholar
  3. Barcroft, J., Binger, C. A., Bock, A. V., Doggart, J. H., Forber, H. S., Harron, G., Meakins, J. C., and Redfield, A. C. (1922). Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes chiefly at Cerro De Pasco. Phil. Trans. Royal Soc. Ser. B. 211: 351.CrossRefGoogle Scholar
  4. Bauer, C. (1969). Antagonistic influence of CO2 and 2,3 diphospho- glyeerate on the Bohr effect of human haemoglobin. Life Sci. 8: 1041.PubMedCrossRefGoogle Scholar
  5. Bauer, C. (1970). Reduction of the carbon dioxide affinity of human hemoglobin solutions by 2,3 diphosphoglycerate. Resp. Physiol. 10: 10.CrossRefGoogle Scholar
  6. Benesch, R., and Benesch, R. E. (1968). Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Nat. Acad. Sci. 59: 526.PubMedCrossRefGoogle Scholar
  7. Deuticke, B., Duhm, J., and Dierkesmann, R. (1971). Maximal elevation of 2,3 diphosphoglycerate concentrations in human erythrocytes: influence on glycolytic metabolism and intracellular pH. Pflugers Arch, ges Physiol. 326: 15.CrossRefGoogle Scholar
  8. Estabrook, R. W., and Maitra, P. K. (1962). A fluorometric method for the quantitative microanalysis of adenine and pyridine nucleotides. Analyt. Biochem. 3: 369.PubMedCrossRefGoogle Scholar
  9. Gerlach, E., Duhm, J., and Deuticke, B. (1970). Metabolism of 2,3 diphosphoglycerate in red blood cells under various experimental conditions. Red Cell Metabolism and Function, Edited by G. Brewer. Plenum Press, New York, pp 155–175.Google Scholar
  10. Gerlach, E., and Duhm, J. (1972). 2,3-DPG metabolism of red cells: regulation and adaptive changes during hypoxia. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, Alfred Benzon Symposium IV, Edited by M. Rorth and P. Astrup. Munksgaard, Copenhagen, pp 552–570.Google Scholar
  11. Greengard, P. (1965). ATP determination of fluorimetry. Methods of Enzymatic Analysis, Edited by H. U. Bergmeyer. Academic Press, London and New York, pp 551–559.Google Scholar
  12. Haldane, J. B. S., Wigglesworth, V. B., and Woodrow, C. E. (1924) The effect of reaction changes on human inorganic metabolism. Proc. Roy. Soc. B. 96: 1.CrossRefGoogle Scholar
  13. Keys, A., Hall, F. G., and Barron, E. S. G. (1936). The position of the oxygen dissociation curve of human blood at high altitudes. Amer. J. Physiol. 115: 292.Google Scholar
  14. Lenfant, C., Torrance, J., English, E., Finch, C. A., Reynafarje, C., Ramos, J., and Faura, J. (1968), Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47: 2652.PubMedCrossRefGoogle Scholar
  15. Lenfant, C., Torrance, J. D., Woodson, R., and Finch, C. A. (1971). Shift of the O2-Hb dissociation curve at altitude, mechanism and effect. J. Appl. Physiol. 30: 625.PubMedGoogle Scholar
  16. Lowry, P. H., Passonneau, J. V., Hasselberger, F. Z., and Schulz, D. W. (1964). Effect of ischemia on known substrates and co-factors of the glycolytic pathway in brain. J. Biol. Chem. 239: 18.PubMedGoogle Scholar
  17. Minakami, S., Suzuki, C., Saito, T., and Yoshikawa, H. (1965). Studies on erythrocyte glycolysis. I. J. Biochem. ( Tokyo ) 58: 543.Google Scholar
  18. Nygaard, S. F., and Rorth, M. (1969). An enzymatic assay of 2,3 diphosphoglycerate in blood. Scand. J. Clin. Lab. Invest. 24: 399.PubMedCrossRefGoogle Scholar
  19. Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature 228: 726.PubMedCrossRefGoogle Scholar
  20. Rapoport, S. (1968). The regulation of glycolysis in mammalian erythrocytes. Essays in Biochemistry, Vol. k9 Edited by P. N. Campell and G. O. Greville, pp 69–103.Google Scholar
  21. Rapoport, S. (1972). Control of glycolysis in the erythrocyte on the level of 1,3 DPG. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, Alfred Benzon Symposium IV, Edited by M. Rorth and P. Astrup. Munksgaard, Copenhagen, pp 526–539.Google Scholar
  22. Rossi-Bernardi, L., and Roughton, F. J. W. (1970). The role of oxygen linked carbamate in the transport of CO2 by human erythrocytes under physiological conditions. J. Physiol. 209: 258.Google Scholar
  23. Rorth, M. (1970). Red cell metabolism and hemoglobin function during exposure to high altitude. Proc. of the Vlth Berliner Symposium on Red Cell Structure and Function. Akademie-Verlag, Berlin.Google Scholar
  24. Rorth, M., Nygaard, S. F., Parving, H. H., Hansen, V., and Kaisig, T. (1972a). Effect of 2 hours exposure to simulated high altitude (4,500) on human red cell metabolism. Scand. J. Clin. Lab. Invest. 29: 000.Google Scholar
  25. Rorth, M., Nygaard, S. F., and Parving, H. H. (1972b) Effect of exposure to simulated high altitude on human red cell phosphates and oxygen affinity of hemoglobin. Influence of exercise. Scand. J. Clin. Lab. Invest. 29: 000.Google Scholar
  26. Rorth, M., Nygaard, S. F., Parving, H. H., Hansen, V., and Kaisig, T. (1972c). Human red cell metabolism and oxygen affinity of hemoglobin during 2k hours exposure to simulated high altitude (4,500 m). Scand. J. Clin. Lab. Invest. 00: 000.Google Scholar
  27. Siggaard-Andersen, O., Jorgensen, K., and Naeraa, N. (1962). Spectro-photometry determination of oxygen saturation in capillary blood. Scand. J. Clin. Lab. Invest. 14: 298.CrossRefGoogle Scholar
  28. Siggaard-Andersen, O. (1971). Oxygen linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3 diphosphoglycerate. I. Studies on erythrolysate. Scand. J. Clin, Lab. Invest. 27: 351.CrossRefGoogle Scholar
  29. Siggaard-Andersen, O., Sailing, N., Norgaard-Pedersen, B., and Rorth, M. (1972a). Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3 diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect. Scand. J. Clin. Lab. Invest. 29: 000.Google Scholar
  30. Siggaard-Andersen, O., Rorth, M., Norgaard-Pedersen, B., Sparre Andersen, O., and Johansen, E. (1972b). Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3 diphosphoglycerate. TV. Thermodynamical relationship between the variables. Scand. J. Clin. Lab. Invest. 29: 000.Google Scholar
  31. Srivastava, S. K., and Beutler, E. (1972). The effect of normal red cell constituents on the activities of red cell enzymes. Arch. Biochem. Biophys. 148: 249.PubMedCrossRefGoogle Scholar
  32. Tomita, S., and Riggs, A. (1971). Studies of the interaction of 2,3 diphosphoglycerate and carbon dioxide with hemoglobin from mouse, man and elephant. J. Biol. Chem. 246: 547.PubMedGoogle Scholar
  33. Travis, S. F., Sugerman, H. J., Ruberg, R. L., Dudrick, S. J., Delivoria-Papadopoulos, M., Miller, L. D., and Oski, F. A. (1971). Alterations of red cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. New Engl. J. Med. 285: 763.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • M. Rorth
    • 1
  • S. F. Nygaard
    • 1
  • H. H. Parving
    • 1
  1. 1.Department of Clinical ChemistryRigshospitaletCopenhagenDenmark

Personalised recommendations