Skip to main content

Contributions of Seed Meristems to Radiobiology

  • Chapter
The Dynamics of Meristem Cell Populations

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 18))

Abstract

“Dry” or dormant biological systems such as bacterial spores, cysts of brine shrimp and seeds of higher plants have been extensively used as test organisms in radiobiological studies. In particular, experiments conducted with the bacterial spore have contributed much to our knowledge of certain radiobiological concepts (see ref. 39 for a review). Plant seeds have been used in similar studies and although inferior to the bacterial spore in population size which can be studied, the seed has several advantages. It represents a multicellular organism with a complex chromosome structure and in addition to reduced survival (the only kind of damage studied in the spore) other radiobiological end-points such as mutations, chromosome aberrations and growth reduction can be readily measured.

Published with the permission of the Dean of the University of Tennessee Agricultural Experiment Station, Knoxville, Tennessee.

Operated by the Tennessee Agricultural Experiment Station for the U. S. Atomic Energy Commission under Contract No. AT-40-GEN-242. Research supported in part by Hatch Project TEN00287.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnstrom, G. and Sanner, T. (1991) Effect of hydration on the decay of radiation-induced radicals and oxygen-sensitive centers in barley seeds. Radiat. Bot. 11: 27–52.

    Article  Google Scholar 

  2. Bacq, Z. M. and Alexander, P. (1961) Fundamentals of Radiobiology. Second Edition. Pergamon Press, London, 555 P.

    Google Scholar 

  3. Caldecott, R. S. (1954) Inverse Relationship between the water content of seeds and their sensitivity to X-rays, Science 120: 809–810.

    Article  PubMed  CAS  Google Scholar 

  4. Caldecott, R. S. (1961) Seedling height, oxygen availability, storage and temperature: Their relation to radiation-induced genetic and seedling injury and barley. p, 3–24. In: Effects of Ionizing Radiations on Seeds. IAEA, Vienna.

    Google Scholar 

  5. Caldecott, R. S., Johnson, Elizabeth B, North, D. T. and Konzak, C. F. (1957) Modification of radiation-induced injury by posttreatment with oxygen. Proc. Nat. Acad. Sci. (U. S.) 43: 975–983.

    Article  CAS  Google Scholar 

  6. Caldecott, R. S. and Smith, L. (1952) The influence of heat treatments on the injury and cytogenetic effects of X-rays on barley. Genetics 37: 156–157.

    Google Scholar 

  7. Cervigni, T., Bassanelli, C., Caserta, G., and Laitano, R. F. (1969) Thermoluminescence in complex biochemicals: A possible correlation with radiosensitivity. Radiat. Res. 38: 579–587.

    Article  PubMed  CAS  Google Scholar 

  8. Conger, A. D. (1961) Biological after-effect and long-lived free radicals in irradiated seeds. In: Symposium on Recovery of Cells From Injury, J. Cell. Comp. Physiol. 58: (Suppl.1) 27–32.

    CAS  Google Scholar 

  9. Conger, A. D. (1963) Chromosome aberrations and tree radicals. p. 167–202. In: S. Wolff (ed.), Radiation-Induced Chromosome Aberrations. Columbia Univ. Press, New York.

    Google Scholar 

  10. Conger, A. D. and Stevenson, H. Q. (1969) A correlation seedling height and chromosomal damage in irradiated barley seeds. Radiat. Bot. 2: 1–14.

    Article  Google Scholar 

  11. Conger, A. D. and Randolph, M. L. (1959) Magnetic centers (free radicals) produced in cereal embryos by ionizing radiation. Radiat. Res. 11: 54–66.

    Article  PubMed  CAS  Google Scholar 

  12. Conger, B. V. (1967) The influence of seed water content on the oxygen effect in irradiated barley seeds. Ph. D. Thesis, Washington State University. 91 p. Typed.

    Google Scholar 

  13. Conger, B. V., Hileman, J. R., Nilan, R. A. and Konzak, C. F. (1971) The influence of temperature on radiation-induced oxygen-dependent and-independent damage in barley seeds. Radiat. Res. 46: 601–612.

    Article  PubMed  CAS  Google Scholar 

  14. Conger, B. V., Konzak, C. F. and Harle, J. R. (1969) A glass manifold vacuum system for controlling atmosphere and water content of seeds for irradiation experiments. Radiat. Bot. 9: 425–427.

    Article  Google Scholar 

  15. Conger, B. V., Nilan, R. A. and Konzak, C. F. (1968) Postirradiation oxygen sensitivity of seeds varying slightly in water content. Radiat. Bot. 8: 31–36.

    Article  Google Scholar 

  16. Conger, B. V., Nilan, R. A. and Konzak, C. F. (1968) Radiobiological damage: A new class identified in barley seeds by post-irradiation storage. Science 162: 1142–1143.

    Article  PubMed  CAS  Google Scholar 

  17. Conger, B. V., Nilan, R. A. and Konzak, C. F. (1969) The role of water content in the decay of radiation-induced oxygen-sensitive sites in barley seeds during post-irradiation hydration. Radiat. Res. 39: 45–56.

    Article  PubMed  CAS  Google Scholar 

  18. Conger, B. V., Nilan, R. A., Konzak, C. F. and Metter, S. (1966) The influence of seed water content on the oxygen effect in irradiated barley seeds. Radiat. Bot. 6: 129–144.

    Article  Google Scholar 

  19. Cook, R. F. (1963) The effect of water and a protective agent on gamma-ray induced free radicals in mustard seeds. Int. J. Rad. Biol. 7: 497–504.

    Article  CAS  Google Scholar 

  20. Curtis, H. J., Delihas, N., Caldecott, R. S. and Konzak, C. F. (1958) Modification of radiation damage in dormant seeds by storage. Radiat. Res. 8: 526–534.

    Article  PubMed  CAS  Google Scholar 

  21. Ehrenberg, A. (1961) Research on free radicals in enzyme chemistry and in radiation biology. p. 337–350. In: M.S. Blois Jr. (ed.), Free Radicals in Biological Systems. Academic Press, New York.

    Google Scholar 

  22. Ehrenberg, A. and Ehrenberg, L. (1958) The decay of X-ray induced free radicals in plant seeds and starch. Arkiv Fysik 14: 133–141.

    CAS  Google Scholar 

  23. Ehrenberg, L. and Nybom, N. (1954) Ion density and biological effectiveness of radiation. Acta. Agr. Scand. 4: 396–418.

    Article  CAS  Google Scholar 

  24. Haber, A. H. and Randolph, M. L. (1967) Gamma-ray-induced ESR signals in lettuce: Evidence for seed-hydration-resistant and-sensitive free radicals. Radiat. Bot. 7: 17–28.

    Article  CAS  Google Scholar 

  25. Kempton, J. H. and Maxwell, L. R. (1941) Effect of temperature during irradiation on the X-ray sensitivity of maize seed. J. Agr. Res. 62: 603–618.

    CAS  Google Scholar 

  26. Fonzak, C. F., Bottino, P. J., Nilan, R. A. and Conger, B. V. (1968) Irradiation of seeds: A review of procedures employed at Washington State University. p. 83–96 In: Neutron Irradiation of Seeds II. IAEA, Vienna.

    Google Scholar 

  27. Konzak, C. F., Curtis, H. J., Delihas, N. and Nilan, R. A. (1960) Modification of radiation-induced damage in barley seeds by thermal energy. Can. J. Genet. Cytol. 2: 129–141.

    Google Scholar 

  28. Konzak, C. F., Nilan, R. A., Harle, J. R., and Heiner, R.E. (1961) Control of factors affecting the response of plants to mutagens. Brookhaven Symp. Biol. 14: 128–157.

    PubMed  CAS  Google Scholar 

  29. Löfroth, G., Ehrenberg, A. and Ehrenberg, L. (1964) Analysis of Radiation induced electron spin resonance spectra in plant seeds. Radiat. Bot. 4: 455–467.

    Article  Google Scholar 

  30. Lunden, A. O. (1964) Seed embryo features ana radiation response. Radiat. Bot. 4: 429–437.

    Article  Google Scholar 

  31. Myhill, R. R. and Konzak, C. F. (1967) A new technique for culturing and measuring barley seedlings. Crop Sci. 7: 275–277.

    Article  Google Scholar 

  32. Myttenaere, C., Bourdeau, Ph., Helcke, G. and Masset, M. (1965) Radiosensitivity of rice seed in relation to water content and free radicals. Radiat. Bot. 5: 443–451.

    Article  Google Scholar 

  33. Nilan, R. A., Konzak, C. F., Harle, J. R. and Heiner, R. E. (1962) Interrelation of oxygen, water and temperature in the production of radiation-induced genetic effects in plants. Strahlentherapie (Suppl.) 51: 171–182.

    CAS  Google Scholar 

  34. Nilan, R. A., Konzak, C. F., Legault, R. R. and Harle, J. R. (1961) The oxygen effect in barley seeds, p. 139–154. In: Effects of Ionizing Radiations on Seeds. IAEA, Vienna.

    Google Scholar 

  35. Nilan, R. A., Konzak, C. F., Wagner, J., ana Legault, R. R. (1965) Effectiveness and efficiency of radiations for inducing genetic and cytogenetic changes. In: The Use of Induced Mutations in Plant Breeding. Radiat. Bot. 5: (Suppl.) 71–89.

    Google Scholar 

  36. Osborne, T. S. and Lunden, A. O. (1965) Prediction of seed radiosensitivity from embryo structure. In: The Use of Induced Mutations in Plant Breeding. Radiat. Bot. 5(Suppl.) 133–149.

    Google Scholar 

  37. Osborne, T. S., Lunden, A. O. and Constantin, M. J. (1963) Radiosensitivity of Seeds III. Effect of pre-irradiation humidity and gamma-ray dose on seeds from five botannical families. Radiat. Bot. 3: 19–28.

    Google Scholar 

  38. Powers, E. L. (1966) Contributions of electron paramagnetic resonance techniques to the understanding of radiation biology. pp. 137-159. In: Electron Spin Resonance and the Effects of Radiation on Biological Systems. NAS-NRC, pub. 1355, Washington, D. C.

    Google Scholar 

  39. Powers, E. L. and Tallentire, A. (1968) The roles of water in the cellular effects of ionizing radiations. p. 1-67 In: Actions Chimiques et Biologiques des Radiations. Mason et C1e, Paris.

    Google Scholar 

  40. Singh, B. B., Venkaterman, B., Notani, N. K., Mouli, Chandra and Bora, K. C. (1962) Role of chemical composition of biological material on the production and decay of radiationinduced free radicals and their identification. p. 2–13. In: Symposium on the Biological Effects of Ionizing Radiation at the Molecular Level. IAEA, Vianna.

    Google Scholar 

  41. Zimmer, K. G., Ehrenberg, L. and Ehrenberg, A (1957) Nachweis langlebiger magnetischer Zentren in bestrahlen biologischen Medien and deren Bedentung für die Strahlenbiologie. Strahlentherapie 103: 3–15.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Conger, B.V. (1972). Contributions of Seed Meristems to Radiobiology. In: Miller, M.W., Kuehnert, C.C. (eds) The Dynamics of Meristem Cell Populations. Advances in Experimental Medicine and Biology, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3207-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3207-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3209-1

  • Online ISBN: 978-1-4684-3207-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics