Skip to main content

The Use of Liquid Crystals in Mössbauer Studies and the Use of the Mössbauer Effect in Liquid Crystal Studies

  • Conference paper
Mössbauer Effect Methodology

Abstract

An ordered solute ‘monocrystal’ can be obtained by dissolving iron or tin bearing molecules into the liquid crystalline material 4-n-hexoxybenzylidene-4’-n-propylaniline (HBPA) and cooling from 90°C to room temperature through the nematic and smectic A phases to the smectic H phase (T≤60°C) in a magnetic field of 9000 gauss. The smectic H structure persists to 77°K and therefore allows the observation of the quadrupole interaction as a function of the angle θ between the aligning field and the gamma direction. In particular, from the θ dependence of the area ratio (Aπ/Aσ) of the quadrupole split doublet both the sign of Vzz and the value of the molecular contribution (at 77°K) to the nuclear vibrational anisotropy (εM) have been determined for the triethyltinpalmitate molecule. Furthermore, the 6 dependence of the recoil free fraction (f) yielded the lattice contribution to the vibrational anisotropy. The above information was obtained by making use of the known ordering properties of liquid crystals in the theoretical fits to the Mössbauer data. In addition, the temperature dependence of f for a 0.2% solution of diacetylferrocene in HBPA has been observed for both the supercooled smectic H phase and the crystal phase in the range 100°–300°K. The data show that the crystal obeys the Debye model and that the smectic H structure is much less rigid and deviates significantly from the Debye prediction above 150°K.

This research has been supported in part by the National Science Foundation under Grant #GH-34164X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Brown, J.W. Doane and V.D. Neff, “Structure and Physical Properties of Liquid Crystals”, D.E. Schuele and R.W. Hoffman, Eds., CRC Critical Reviews of Solid State Sciences, p. 303–379 (September 1970).

    Google Scholar 

  2. A. Saupe, Angewand. Chem. 7, 97 (1968).

    Article  CAS  Google Scholar 

  3. D.L. Uhrich, J.M. Wilson and W.A. Resch, Phys. Rev. Letters 24, 355 (1970).

    Article  CAS  Google Scholar 

  4. D.L. Uhrich, Y.Y. Hsu, D.L. Fishel and J.M. Wilson, Mol. Cryst., Liquid Cryst. (in press).

    Google Scholar 

  5. H. Sackmann and D. Demus, Mol. Cryst. 2, 81 (1966).

    Article  Google Scholar 

  6. A. de Vries, Mol. Cryst., Liquid Cryst. 16, 311 (1972).

    Article  Google Scholar 

  7. W. Maier and A. Saupe, Zeits. fur Naturfors. 14A, 882 (1959).

    CAS  Google Scholar 

  8. C. Yannoni, Second Symposium on Ordered Fluids and Liquid Crystals, American Chemical Society Meeting, New York, September 1969.

    Google Scholar 

  9. R.E. Detjen, D.L. Uhrich and C.F. Sheley, Phys. Letters A (in press).

    Google Scholar 

  10. P. Zory, Phys. Rev. 140, A1401 (1965) and Ph.D. Thesis Carnegie Institute of Technology, 1964 (unpublished).

    Article  Google Scholar 

  11. J.M. Wilson and D.L. Uhrich, Mol. Cryst., Liquid Cryst. 13, 85 (1970).

    Article  Google Scholar 

  12. V.I. Goldanskii and E.F. Makarov, “Fundamentals of Gamma-Resonance Spectroscopy” in Chemical Applications of Mössbauer Spectroscopy, V.I. Goldanskii and R.H. Herber, Eds., Academic Press, New York (1966).

    Google Scholar 

  13. J.M. Wilson and D.L. Uhrich, (to be published).

    Google Scholar 

  14. The x-ray measurements were made by A. de Vries, Liquid Crystal Institute, Kent State University, Kent, Ohio 44242.

    Google Scholar 

  15. J.G. Stevens and V.E. Stevens, Eds., “Mössbauer Effect Data Index”, Plenum Publishing Corp., New York (1970).

    Google Scholar 

  16. D.C. Champeney and F.W.D. Woodhams, J. Phys. B (Proc. Phys. Soc.) 1, 620 (1968).

    Google Scholar 

  17. J.H. Jensen, Phys. kondens. Materie 13, 273 (1971).

    Article  Google Scholar 

  18. S.L. Ruby and I. Pelah, “Crystals, Supercooled Liquids, and Glasses in Frozen Aqueous Solutions” in Mössbauer Effect Methodology, Vol. 6, I.J. Gruverman, Ed., Plenum Press, New York (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 New England Nuclear Corporation

About this paper

Cite this paper

Uhrich, D.L., Detjen, R.E., Wilson, J.M. (1973). The Use of Liquid Crystals in Mössbauer Studies and the Use of the Mössbauer Effect in Liquid Crystal Studies. In: Gruverman, I.J., Seidel, C.W. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3162-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3162-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3164-3

  • Online ISBN: 978-1-4684-3162-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics