Skip to main content

Comparison of the Mössbauer Effect to Time-Differential Perturbed Angular Correlations: The Case of Fe57 in a Nickel Host

  • Conference paper
  • 56 Accesses

Abstract

Time-differential perturbed angular correlations (TDPAC) is a technique which, when applied to hyperfine interactions in solids, has yielded information similar to the Mössbauer effect. Until our recent experiment on the Fe57/Ni impurity-host system, no one had studied any system by TDPAC that had also been studied in detail by the Mössbauer effect. Our TDPAC experiment on Fe57/Ni was made possible through improvements in delayed coincidence time resolution. We use our results on Fe57/Ni, and Mössbauer results on the same system, to illustrate a general comparison between the Mössbauer and the TDPAC techniques. Our conclusion is that, although both methods share certain common aspects such as source preparation, there are important differences in the two methods which give one or the other a distinct advantage in various applications.

Supported in part by the US Atomic Energy Commission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Hohenemser, R. Reno, H. C. Benski, and J. Lehr, Phys. Rev. 184:298 (1969).

    Article  CAS  Google Scholar 

  2. E. Karlsson, E. Matthias, and K. Siegbahn, Perturbed Angular Correlations (North Holland Publishing Co., Amsterdam, 1964).

    Google Scholar 

  3. E. Matthias and D. A. Shirley (eds.), Hyperfine Structure and Nuclear Radiations (North Holland Publishing Co., Amsterdam, 1968).

    Google Scholar 

  4. E. Matthias, D. A. Shirley, N. Edelstein, H. J. Körner, and B. A. Olsen, Ref. [3], p. 878.

    Google Scholar 

  5. E. Matthias, L. Boström, A. Maciel, M. Salomon, and T. Lindqvist, Nucl Phys. 40:656(1963).

    Article  Google Scholar 

  6. R. M. Steffen and H. Frauenfolder, Ref. [2], p. 3.

    Google Scholar 

  7. E. Matthias, S. S. Rosenblum, and D. A. Shirley, Phys. Rev. Letters 14:46 (1965).

    Article  Google Scholar 

  8. F. J. Lynch, IEEE Trans. Nucl. Sci. NS-13:140 (1966).

    Article  Google Scholar 

  9. C. Hohenemser and R. Reno, Bull. Am. Phys. Soc. 15:99 (1970); IEEE Trans. Nucl. Sei., to appear.

    Google Scholar 

  10. T. Lindqvist and E. Heer, Nucl. Phys. 2:280 (1956/57).

    Google Scholar 

  11. V. S. Shirley, Ref. [3], p. 985.

    Google Scholar 

  12. G. K. Wertheim, J. Appl. Phys. (Suppl.) 32:110S (1961).

    Article  Google Scholar 

  13. J. G. Dash, B. C. Dunlap, and D. G. Howard, Phys. Rev. 141:376 (1966).

    Article  CAS  Google Scholar 

  14. G. K. Wertheim and D. N. E. Buchanan, J. Phys. Chem. Solids 28:225 (1967).

    Article  CAS  Google Scholar 

  15. D. A. Shirley, S. S. Rosenblum, and E. Matthias, Phys. Rev. 170:363 (1968).

    Article  CAS  Google Scholar 

  16. S. Margulies and J. R. Ehrmann, Nucl. Instr. and Methods 12:131 (1961).

    Article  Google Scholar 

  17. J. Alonso and L. Grodzins, Ref. [3], p. 549.

    Google Scholar 

  18. J. Braunsfurth, J. Morgenstern, and H. Schmidt, Z. Physik 202:321 (1967).

    Article  CAS  Google Scholar 

  19. R. Stockstad, R. Moline, C. Barnes, F. Boehm, and A. Winther, Ref. [3], p. 699.

    Google Scholar 

  20. C. Hohenemser, R. Reno, and H. C. Benski, Bull. Am. Phys. Soc. 15:67 (1970).

    Google Scholar 

  21. J. Cisneros, G. Liljegren, T. Lindqvist, and A. Lopez Garcia, Arkiv Fysik 38:363 (1968).

    CAS  Google Scholar 

  22. S. G. Cohen, N. Kaplan, and S. Ofer, in Perturbed Angular Correlations, K. Karlsson, E. Matthias, and K. Siegbahn (North Holland Publishing Co., Amsterdam, 1964), p. 313.

    Google Scholar 

  23. O. Klepper, H. Spehl, and N. Wertz, Z. Physik 217:425 (1968).

    Article  CAS  Google Scholar 

  24. J. Vanderleeden, Ref. [3], p. 495.

    Google Scholar 

  25. G. Rao, E. Matthias, and D. A. Shirley, Phys. Rev. 184:325 (1969).

    Article  CAS  Google Scholar 

  26. S. S. Rosenblum, thesis, Department of Chemistry, University of California, Berkeley, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 New England Nuclear Corporation

About this paper

Cite this paper

Hohenemser, C. (1971). Comparison of the Mössbauer Effect to Time-Differential Perturbed Angular Correlations: The Case of Fe57 in a Nickel Host. In: Gruverman, I.J. (eds) Proceedings of the Sixth Symposium on Mössbauer Effect Methodology New York City, January 25, 1970. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3159-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3159-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3161-2

  • Online ISBN: 978-1-4684-3159-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics