Skip to main content

Mössbauer Experiments with a He3/He4 Dilution Refrigerator

  • Conference paper
Mössbauer Effect Methodology

Abstract

The large cooling capacity of He3/He4 dilution refrigerators has made the temperature region below some hundredths of a degree available for Mössbauer resonance experiments. A spectrometer which allows the cooling of either the source or the absorber or both is described. Temperatures as low as 0.03°K were reached with this system. The application of very low temperatures is of interest for certain solid-state properties, such as low-lying magnetic transitions, paramagnetic relaxation, and localized magnetic moments, including the Kondo effect. It further allows Mössbauer measurements on oriented nuclei, which leads to an absolute thermometer, and gives information concerning the hyperfine interaction at the parent nuclei and the ß-decay matrix elements. In addition to a general discussion of these applications, data which were obtained with the Mössbauer isotopes Fe57, Eu151, and Au197 will be presented.

Based on work performed in part under the auspices of the Finnish Atomic Energy Commission and the US Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Dash, R. D. Taylor, P. P. Craig, D. E. Nagle, D. R. Cochran, and W. E. Keller, Phys. Rev. Letters 5:152 (1960).

    Article  CAS  Google Scholar 

  2. J. G. Dash, R. D. Taylor, D. E. Nagle, P. O. Craig, and W. M. Visscher, Phys. Rev. 122:1116(1961).

    Article  CAS  Google Scholar 

  3. R. D. Taylor, in: Temperature, Its Measurement and Control in Science and Industry, C. M. Herzfeld and F. G. Brickwedde, eds. (Reinhold Publishing Corp., New York, 1962), Vol. 3, Part 1, p. 139.

    Google Scholar 

  4. R. D. Taylor, in : The Mössbauer Effect (Proc. Second International Conference on the Mössbauer Effect), D. M. Compton and A. H. Schoen, eds. (John Wiley and Sons, New York, 1962), p. 203.

    Google Scholar 

  5. M. Shinohara, A. Ito, T. Fujita, A. Ishigaki, and K. Ôno, Japan J. Appl.Phys. 6:982 (1967);

    Article  CAS  Google Scholar 

  6. M. Shinohara, A. Ito, T. Fujita, A. Ishigaki, and K. Ôno, Japan J. Appl.Phys. 7:170 (1968).

    Article  CAS  Google Scholar 

  7. H. E. Hall, P. J. Ford, and K. Thompson, Cryogenics 6:80 (1966).

    Article  CAS  Google Scholar 

  8. B. S. Neganov, N. Borisov, and M. Liburg, Soviet Phys-JETP 23:959 (1966).

    Google Scholar 

  9. O. E. Vilches and J. C. Wheatley, Physics Letters 24A:440 (1967);

    Google Scholar 

  10. O. E. Vilches and J. C. Wheatley, Physics Letters 25A:344 (1967).

    Google Scholar 

  11. J. C. Wheatley, O. E. Vilches, and W. R. Abel, Physics 4:1 (1968).

    Google Scholar 

  12. O. V. Lounasmaa, Helv. Phys. Acta 41:1021 (1968).

    CAS  Google Scholar 

  13. G. M. Kalvius, in: Mössbauer Effect Methodology, Vol. 1, I. J. Gruverman, ed. (Plenum Press, New York, 1965), p. 163ff.

    Google Scholar 

  14. W. A. Steyert and M. D. Daybell, in: Mössbauer Effect Methodology, Vol. 4, I. J. Gruverman, ed. (Plenum Press, New York, 1965), p. 3ff.

    Google Scholar 

  15. G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Cryogenics 8:136(1968).

    Article  CAS  Google Scholar 

  16. L. D. Roberts and J. O. Thomson, Phys. Rev. 129:664 (1963).

    Article  CAS  Google Scholar 

  17. G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Physics Letters 25A:758 (1967).

    Google Scholar 

  18. J. G. Ehnholm, T. E. Katila, O. V. Lounasmaa, P. Reivari, and G. M. Kalvius, Proc. Eleventh International Conference on Low Temperature Physics, Vol. 1, J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (St. Andrews, Scotland, 1968), p. 528.

    Google Scholar 

  19. S. Margulies and J. R. Ehrman, Nucl. Instr. Meth. 12:131 (1961).

    Article  Google Scholar 

  20. G. A. Bykov and Pham Zuy Hien, Soviet Phys.—JETP 16:646 (1963).

    Google Scholar 

  21. P. Reivari, Phys. Rev. Letters 22:167 (1969).

    Article  CAS  Google Scholar 

  22. H. A. Weidenmuller, Rev. Mod. Phys. 33:574 (1961).

    Article  Google Scholar 

  23. S. R. DeGroot, H. A. Tolhoek, and W. Huiskamp, in: Alpha- Beta- and Gamma-Ray Spectroscopy, K. Siegbahn, ed. (North-Holland Publishing Co., Amsterdam, 1968), p. 1199ff.

    Google Scholar 

  24. R. Geller, F. Wagner, W. Wiedemann, and P. Kienle, private communication (1968).

    Google Scholar 

  25. G. M. Kalvius, G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Bull. Am. Phys. Soc. 13:1469 (1968).

    Google Scholar 

  26. R. L. Cohen, Phys. Rev. 171:343 (1968).

    Article  CAS  Google Scholar 

  27. D. A. Shirley, in: Hyperfine Structure and Nuclear Radiations, E. Mathias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968), p. 979ff.

    Google Scholar 

  28. V. S. Shirley, in : Hyperfine Structure and Nuclear Radiations, E. Mathias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968), p. 985.

    Google Scholar 

  29. H. H. Wickman, in: Chemical Applications of Mössbauer Spectroscopy, V. I. Goldanskii and R. H. Herber, eds. (Academic Press, New York, 1968), p. 548ff.

    Google Scholar 

  30. R. L. Cohen, Bull. Am. Phys. Soc. 13:667 (1968).

    Google Scholar 

  31. G. Gerth, P. Kienle, and K. Luchner, Physics Letters 27A:557 (1968).

    Google Scholar 

  32. F. Holtzberg, G. M. Kalvius, G. K. Shenoy, and B. D. Dunlap, unpublished (1968).

    Google Scholar 

  33. H. H. Wickman, I. Nowik, J. H. Wernick, D. A. Shirley, and R. B. Frankel, J. Appl. Phys. 37:1246 (1966).

    Article  CAS  Google Scholar 

  34. H. Maletta, W. Heidrich, and R. L. Mössbauer, Physics Letters 25A:295 (1968).

    Google Scholar 

  35. J. M. Baker, F. I. Williams, Proc. Roy. Soc. (London) A267:283 (1963).

    Google Scholar 

  36. A. J. Nozik, M. Kaplan, and A. I. Weiss, Bull. Am. Phys. Soc. 13:894 (1968).

    Google Scholar 

  37. M. Stachel, S. Hüfner, G. Crecelius, and D. Quitmann, Physics Letters 28A:188(1968).

    Google Scholar 

  38. R. A. Carrigan, Jr., P. D. Gupta, R. B. Sutton, M. Suzuki, A. C. Thompson, R. E. Coté, W. V. Prestwich, A. K. Gaigalas, and S. Raboy, Phys. Rev. Letters 20:874(1968).

    Article  CAS  Google Scholar 

  39. S. L. Ruby, in: Mössbauer Effect Methodology, Vol. 3, I. J. Gruverman, ed., (Plenum Press, New York, 1967), p. 203ff.

    Google Scholar 

  40. P. Kienle, Rev. Mod. Phys. 36:372 (1964).

    Article  CAS  Google Scholar 

  41. H. Horie and A. Arima, Phys. Rev. 99:778 (1955).

    Article  CAS  Google Scholar 

  42. I. Koniordos and R. Winkler, Phys. Letters 27A:198 (1968).

    Google Scholar 

  43. R. A. Uher, private communication; R. A. Uher and R. A. Sorensen, Nucl. Phys. 86:1 (1966).

    Article  CAS  Google Scholar 

  44. E. Steichele, Z. Physik 201:331 (1967).

    Article  CAS  Google Scholar 

  45. S. Hüfner, P. Kienle, D. Quitmann, and P. Brix, Z. Physik 187:67 (1965).

    Article  Google Scholar 

  46. A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27(16) (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this paper

Cite this paper

Kalvius, G.M., Katila, T.E., Lounasmaa, O.V. (1970). Mössbauer Experiments with a He3/He4 Dilution Refrigerator. In: Gruverman, I.J. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3156-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3156-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3158-2

  • Online ISBN: 978-1-4684-3156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics