Skip to main content

Thermal Stress Crack Stability and Propagation in Severe Thermal Environments

  • Conference paper

Part of the book series: Materials Science Research ((MSR,volume 5))

Abstract

A fracture-mechanical analysis is presented for stability criteria and propagation behavior of thermal stress cracks in brittle ceramics in environments so severe that initiation cannot be avoided. It is based on a mechanical model consisting of a rigidly constrained, uniformly cooled thin flat plate with a uniform distribution of microcracks; results are qualitatively similar to those obtained for a three-dimensional body with penny-shaped cracks. High stability of thermal stress cracks is attained in materials with high values of surface fracture energy, and low values of thermal expansion and Young’s modulus. On catastrophic propagation of an initially short crack, the final crack is subcritical and has a length which is independent of material properties but depends only on the initial crack length and the crack density. It is suggested that materials with very high thermal shock resistance can be developed by synthesizing materials with high densities of microcracks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. D. Kingery, J. Am. Ceram. Soc., 38 [1] 3–15 (1955).

    Article  Google Scholar 

  2. W. B. Crandall and J. Ging, J. Am. Ceram. Soc., 38 44 (1955).

    Article  Google Scholar 

  3. D. P. H. Hasselman, J. Am. Ceram. Soc., 46 [5] 229–34 (1963).

    Article  Google Scholar 

  4. W. R. Buessum, Sprechsaal, 93 137–41 (1960).

    Google Scholar 

  5. D. P. H. Hasselman, J. Am. Ceram. Soc., 50 [9] 454–57 (1967).

    Article  CAS  Google Scholar 

  6. B. Schwartz, J. Am. Ceram. Soc., 35 [12] 325–33 (1952).

    Article  CAS  Google Scholar 

  7. E. Glenny and M. G. Royston, Trans. Brit. Ceram. Soc., 57 [10] 645–77 (1958).

    Google Scholar 

  8. R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc., 38 [1] 33–37 (1955).

    Article  Google Scholar 

  9. R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc., 39 [11] 377–83 (1956).

    Article  Google Scholar 

  10. W. B. Crandall and J. Ging, J. Am. Ceram. Soc., 38 [1] 44–54 (1955).

    Article  Google Scholar 

  11. D. P. H. Hasselman, J. Am. Ceram. Soc., 46 [11] 535–40 (1963).

    Article  CAS  Google Scholar 

  12. J. Nakayama and M. Ishizuka, Bull. Am. Ceram. Soc., 45 [7] 666–69 (1966).

    Google Scholar 

  13. D. P. H. Hasselman, J. Am. Ceram. Soc., 52 [11] 600–7 (1969).

    Article  CAS  Google Scholar 

  14. J. P. Berry, J. Mech. Phys. Solids, 8, 206–17 (1960).

    Google Scholar 

  15. A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221 [4] 163–98 (1920).

    Google Scholar 

  16. A. A. Griffith, pp. 55-63 in Proc. First Intern. Congr. Appl. Mech., Delft, 1924.

    Google Scholar 

  17. D. P. H. Hasselman, J. Am. Ceram. Soc. (to be published).

    Google Scholar 

  18. M. S. Tacvorian, Soc. Franc, Ceram. Bull., 29 20–40 (1955).

    Google Scholar 

  19. W. R. Morgan, J. Am. Ceram. Soc. 14 [12] 913–23 (1931).

    Article  CAS  Google Scholar 

  20. R. C. Rossi, Bull. Am. Ceram. Soc., 48 [7] 736–37 (1969).

    CAS  Google Scholar 

  21. E. A. Bush and F. A. Hummel, J. Am. Ceram. Soc., 41 [6] 189–95 (1958); ibid. 42 [8] 388–91 (1959).

    CAS  Google Scholar 

  22. O. L. Bowie, J. Math. Phys., 35 [1] 60–71 (1956).

    Google Scholar 

  23. C. W. Parmelee and A. E. il. Westman, J. Am. Ceram. Soc. 11 [12] 884–95 (1928).

    Google Scholar 

  24. O. Bartsch, Ber. Deut. Keram. Ges., 18 [11] 465–89 (1937).

    CAS  Google Scholar 

  25. S. Kato and H. Okuda, Nagoya Kogyo Gijutsu Shikensko Hokoku 8 [5] 37–43 (1959).

    Google Scholar 

  26. R. C. Rossi and R. D. Carnahan, in Ceramic Microstructures, R. M. Fulrath and J. A. Pask (eds), John Wiley and Sons, Inc., (1968), pp. 620 – 635.

    Google Scholar 

  27. D. P. H. Hasselman and P. T. B. Shaffer, WADC-TR 60 - 749, (April 1962)

    Google Scholar 

  28. Y. Baskin, C. A. Arenberg and J. H. Handwerk, Bull. Am. Ceram. Soc., 38 [7] 345–49 (1959).

    CAS  Google Scholar 

  29. J. R. Tinklepaugh, in Cermets, Reinhold Corp. (1960), pp. 170–180.

    Google Scholar 

  30. P. L. Gutshall and P. E. Gross, Eng. Fracture Mechanics, 1, 463–71 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this paper

Cite this paper

Hasselman, D.P.H. (1971). Thermal Stress Crack Stability and Propagation in Severe Thermal Environments. In: Kriegel, W.W., Palmour, H. (eds) Ceramics in Severe Environments. Materials Science Research, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3141-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3141-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3143-8

  • Online ISBN: 978-1-4684-3141-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics