Skip to main content

Deformation Behavior of Alumina at Elevated Temperatures

  • Conference paper
Ceramics in Severe Environments

Part of the book series: Materials Science Research ((MSR,volume 5))

Abstract

The thermomechanical behavior and microstructural observations of several polycrystalline alumina bodies varying from 2–80 µm in grain size with typical purities of ⩾99% tested in compression at T ⩾1210°C are presented. The mechanical behavior of alumina is considered in terms of these results and similar investigations of the behavior of sapphire bicrystals. Plastic deformation is observed to be related to dislocations, mechanical twinning and/or grain boundary shear. In general, decreasing the grain size gives rise to a transition in deformation mechanisms and leads to increased mechanical strength. Impurities, however, strongly modify this relationship and are instrumental in enhancing grain boundary shear processes in alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. G. Langdon and J. A. Pask; pp. 53–127 in High Temperature Oxides, Part III, Ed. by A. M. Alper, Academic Press, New York, 1970.

    Google Scholar 

  2. R. M. Fulrath and J. A. Pask, Ceramic Microstructures, John Wiley & Sons, Inc. New York, 1966.

    Google Scholar 

  3. J. J. Burke, N. L. Reed, and V. Weiss. Ultrafine Grain Ceramics. Syracuse University Press, Syracuse, N. Y. 1970.

    Google Scholar 

  4. F. M. Vahldiek and S. A. Mersol, Eds. Anistropy in Single-Crystal Refractory Compounds. Plenum Press, New York, 1968.

    Google Scholar 

  5. T. Vasilos and E. M. Passmore, pp. 406–430 in Ref. 2.

    Google Scholar 

  6. A. H. Heuer, Proc. Brit. Ceram. Soc. 15 173–184 (1970).

    Google Scholar 

  7. P. F. Becher, “Deformation Substructure in Polycrystalline Alumina”, to be published in J. Mater. Sei.

    Google Scholar 

  8. R. L. Bell and T. G. Langdon,- pp. 115–137 in Interfaces Conference, Ed. R. C. Gifkins, Butterworths, Sidney (Australia), 1969.

    Google Scholar 

  9. P. F. Becher and H. Palmour III, J. Am. Ceram. Soc. 53 (3) 119–123 (1970).

    Article  CAS  Google Scholar 

  10. P. F. Becher and H. Palmour III, “Grain Boundary Shear in a-Al20 3”, submitted for publication.

    Google Scholar 

  11. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, Electron Microscopy of Thin Crsytals. Butterworths, London, 1965.

    Google Scholar 

  12. N. J. Tighe and A. Hyman, pp. 121–136 in Ref. 4.

    Google Scholar 

  13. N. J. Tighe, pp. 109–133 in Ref. 3.

    Google Scholar 

  14. B. J. Hockey, “Plastic Deformation of Alumina by Indentation and Abrasion”, submitted for publication.

    Google Scholar 

  15. B. J. Hockey, “Observation on Mechanically Abraded Aluminum Oxide Crystals”, in Proceedings of Symposium on the Science of Ceramic Machining & Surface Finishing, National Bureau of Standards, Gaithersburg, Md., Nov. 1970. (in press).

    Google Scholar 

  16. W. H. Rhodes and R. M. Cannon, “Microstructure Studies of Refrac tory Polycrystalline Oxides”, Summary Report AVSD-0038–70–RR, Contract N00019–69–C-0198, Dec. 1969.

    Google Scholar 

  17. H. Gleiter, E. Hornbogen and G. Baro, Acta. Met. 16, 1053–1067 ( 1968

    Article  CAS  Google Scholar 

  18. Y. Ishida and M. Henderson-Brown, Acta Met. 15, 857–860 (1967).

    Article  CAS  Google Scholar 

  19. A. H. Heuer, R. M. Cannon and N. J. Tighe pp. 339–360 in Ref. 3.

    Google Scholar 

  20. A. H. Heuer, Phil Mag. 13, 379–393 (1966).

    Article  CAS  Google Scholar 

  21. H. Conrad, K. Janowski and E. Stofel, Trans. AIME 233, 255–256 ( 1965

    CAS  Google Scholar 

  22. R. L. Bertolloti, “Creep of Aluminum Oxide Single Crystals and Bicrystals”, Ph.D. Thesis, Department of Ceramic Engineering, University of Washington, Seattle, 1970.

    Google Scholar 

  23. P. D. Bayer and R. E. Cooper, J. Mater. Sei. 2 (3) 301–302 (1967).

    Article  CAS  Google Scholar 

  24. A. S. Teleman and A. J. McEvily, Jr., Fracture of Structural Materials. John Wiley and Sons, Inc., New York, 1967.

    Google Scholar 

  25. R. W. Cahn; pp. 1–28 in Deformation Twinning. R. E. Reed-Hill J. P. Hirth and H. C. Rogers, Gordon and Breach Scientific Publishers, New York, 1964.

    Google Scholar 

  26. P. B. Prices pp. 41–130 in Electron Microscopy and Strength of Crystals. Edby G. Thomas and J. Washburn, Interscience Publishers, Inc., New York, 1963.

    Google Scholar 

  27. S. Maruyama, J. Phys. Soc. Japan 15, 1248–1251 (1960).

    Google Scholar 

  28. R. E. Reed-Hill, pp. 295–320 in Ref. 23.

    Google Scholar 

  29. H. Palmour III, W. W. Kriegel, P. F. Becher and M. L. Huckabee, “Grain Boundary Sliding in Alumina Bicrystals”, Final Report ORD-3328–17, Contract AT-(40–1)-3328, July 1970.

    Google Scholar 

  30. A. H. Heuer, R. F. Firestone, and J. D. Snow, “Non-basal Slip in Aluminum Oxide (AI2O3)”, Tech. Rept. 2, Contract N00014–67–A- 0404–0003, NR 032–058, Sept. 1970.

    Google Scholar 

  31. J. B. Holt5 pp. 169–190 in Sintering and Related Phenomena, Edby G. C. Kuczynski, N. A. Hooton and C. F. Gibbon. Gordon and Breach Scientific Publishers, New York, 1967.

    Google Scholar 

  32. B. J. Wuensch and T. Vasilos, J. Am. Ceram. Soc. 48 (8), 433–436 (1966).

    Article  Google Scholar 

  33. J. B. Holt and R. H. Condit; pp. 13–30 in Materials Science Research Vol. 3. Edby W. W. Kriegel and H. Palmour III, Plenum Press, New York, 1966.

    Google Scholar 

  34. K. R. Riggs and M. Wuttig, J. Appl. Phys. 40 (11) 4682–4683 (1969).

    Article  CAS  Google Scholar 

  35. M. F. Ashby and R. Raj, “On Continum Aspects of Grain Boundary Sliding and Diffusional Creep”, Tech. Rept. 2, Contract N00014–67–A-0298–0020, NR-031–732, June, 1970.

    Google Scholar 

  36. M. F. Ashby and R. Raj, “The Use of a Bubble Model to Study Stress- induced Migration and Sliding of Grain Boundaries”, Tech. Report 556, Contract N00014–67–A-0298–0010, Nr-031–503, 1968.

    Google Scholar 

  37. H. Conrad; pp. 218–269 in Mechanical Behavior of Materials at Elevated Temperatures. Edby J. E. Dom, McGraw-Hill Book Co., Inc., New York, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this paper

Cite this paper

Becher, P.F. (1971). Deformation Behavior of Alumina at Elevated Temperatures. In: Kriegel, W.W., Palmour, H. (eds) Ceramics in Severe Environments. Materials Science Research, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3141-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3141-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3143-8

  • Online ISBN: 978-1-4684-3141-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics