Skip to main content

Creep Mechanisms in Ceramic Materials at Elevated Temperatures

  • Conference paper
Ceramics in Severe Environments

Part of the book series: Materials Science Research ((MSR,volume 5))

Abstract

The creep of ceramic materials at elevated temperatures may take place by the movement of dislocations within the lattice, by grain boundary sliding, and/or by stress-directed diffusion either through the lattice or along the grain boundaries. Other accommodation mechanisms, such as grain boundary separations, may also occur. Some indication of the significant creep mechanism may be obtained by determining the dependence of steady-state creep rate on stress, grain size, and temperature. A comparison is made between the predictions arising from the theoretical models and recent experimental data obtained on several materials in both single crystal and polycrystalline forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. R. N. Nabarro; pp. 75–90 in Rpt. of a Conf. on Strength of Solids, (University of Bristol, July 1947 ). The Physical Society, London, 1948.

    Google Scholar 

  2. C. Herring, J. Appi. Phys. 21 (5) 437–45 (1950).

    Article  Google Scholar 

  3. R. L. Coble, J. Appi. Phys. 34 (6) 1679–82 (1963).

    Article  Google Scholar 

  4. M. F. Ashby, R. Raj and R. C. Gifkins, Scripta Met. 4 (9) 737–41 (1970).

    Article  Google Scholar 

  5. J. Weertman, J. Appi. Phys. 28 (3) 362–64 (1957).

    Article  CAS  Google Scholar 

  6. J. Weertman, J. Appi. Phys. 28 (10) 1185–89 (1957).

    Article  Google Scholar 

  7. R. Changv pp. 275–85 in Physics and Chemistry of Ceramics. Edby C. Klingsberg. Gordon and Breach, New York, 1963.

    Google Scholar 

  8. F. R. N. Nabarro, Phil. Mag. 16 (140) 231–37 (1967).

    Article  CAS  Google Scholar 

  9. T. G. Langdon, Phil. Mag. 22 (178) 689–700 (1970).

    Article  Google Scholar 

  10. A. K. Mukherjee, J. E. Bird, and J. E. Dom, Trans. Amer. Soc. Metals 62 (1) 155–79 (1969).

    CAS  Google Scholar 

  11. N. Balasubramanian and J. C. M. Li, J. Mat. Sci. 5 (5) 434–44 (1970).

    Article  CAS  Google Scholar 

  12. I. M. Lifshitz, Soviet Physics JETP 17 (4) 909–20 (1963).

    Google Scholar 

  13. R. C. Gifkins and T. G. Langdon, Scripta Met. 4 (8) 563–66 (1970).

    Article  Google Scholar 

  14. R. C. Gifkins and K. U. Snowden, Nature (London) 212 (5065) 916–17 (1966).

    Article  CAS  Google Scholar 

  15. G. G. Bentle and R. M. Kniefel, J. Amer. Ceram. Soc. 48 (11) 570–77 (1965).

    Article  CAS  Google Scholar 

  16. M. H. Leipold, J. Amer. Ceram. Soc. 49 (9) 498–502 (1966).

    Article  CAS  Google Scholar 

  17. J. Weertman, Trans. Amer. Soc. Metals 61 (4) 681–94 (1968).

    Google Scholar 

  18. W. R. Cannon and 0. D. Sherby, J. Amer. Ceram. Soc. 53 (6) 346–49 (1970).

    Google Scholar 

  19. J. M. Dupouy, Phil. Mag. 22 (175) 205–7 (1970).

    Article  Google Scholar 

  20. R. L. Bell and T. G. Langdon; pp. 115–37 in Interfaces Conference. Ed. by R. C. Gifkins. Butterworths, Sydney, 1969.

    Google Scholar 

  21. T. G. Langdon, Mat. Sci. Eng. 7 (2) 117–18 (1971).

    Google Scholar 

  22. M. F. Ashby, Scripta Met. 3 (11) 837–42 (1969).

    Google Scholar 

  23. E. M. Passmore, R. H. Duff and T. Vasilos, J. Amer. Ceram. Soc. 49 (11) 594–600 (1966).

    Article  CAS  Google Scholar 

  24. T. G. Langdon, J. Nucl. Mat. 38 (1) 88–92 (1971).

    Article  CAS  Google Scholar 

  25. H. W. Green, J. Appl. Phys. 41 (9) 3899–3902 (1970).

    Article  CAS  Google Scholar 

  26. D. R. Cropper, “Creep in LiF Single Crystals at Elevated Temperatures”, UCRL-20350, University of California at Berkeley, (Ph.D. Thesis), 1970.

    Google Scholar 

  27. D. R. Cropper and T. G. Langdon, Phil. Mag. 18 (156) 1181–92 (1968).

    Article  CAS  Google Scholar 

  28. T. G. Langdon and J. A. Pask, Acta Met. 18 (5) 505–10 (1970).

    Article  Google Scholar 

  29. T. Sugita and J. A. Pask, J. Amer. Ceram. Soc. 53 (11) 609–13 (1970).

    Article  CAS  Google Scholar 

  30. P. E. Hart and J. A. Pask, J. Amer. Ceram. Soc., (in press). (UCRL-19699, July 1970).

    Google Scholar 

  31. N. V. Shishkov, P. P. Budnikov and P. L. Volodin; pp. 225–43 in New Nuclear Materials Including Nonmetallic Fuels, Vol. 1. International Atomic Energy Agency, Vienna, 1963.

    Google Scholar 

  32. T. G. Langdon and J. A. Pask, p. 283 this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this paper

Cite this paper

Langdon, T.G., Cropper, D.R., Pask, J.A. (1971). Creep Mechanisms in Ceramic Materials at Elevated Temperatures. In: Kriegel, W.W., Palmour, H. (eds) Ceramics in Severe Environments. Materials Science Research, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3141-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3141-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3143-8

  • Online ISBN: 978-1-4684-3141-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics