Skip to main content

The Compressive Strength of Ceramics

  • Conference paper
Ceramics in Severe Environments

Part of the book series: Materials Science Research ((MSR,volume 5))

Abstract

The literature on compressive strengths of crystalline ceramics, especially at room temperature, suggests that microplasticity may be the mechanism of much compressive failure since (2) the yield stress (microhardness/3) is the upper limit of both ambient and elevated temperature compressive strengths and (2) data on grain size dependence are consistent with the Fetch equation. A failure theory is developed which is in accord with (1) experimentally observed variations in microhardness and compressive strength data, (2) stress concentrations due to thermal and mechanical anisotropies, impurities, pores and flaws, and (3) twin-induced premature fracture. Applicability of the theory is evaluated for crystalline ceramics in terms of conventional flaw theories, and relevance for non-crystalline ceramics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Rudnick, C. W. Marschall, W. H. Duckworth, and B. R. Emrich, “The Evaluation and Interpretation of Mechanical Properties of Brittle Materials”, Defense Ceramic Information Center Report DCIC 68 - 3, 1968.

    Google Scholar 

  2. R. W. Davidge and R. W. Whitworth, Phil. Mag. 62, 217–224 (1964).

    Google Scholar 

  3. J. S. Dryden, S. Morimoto, and J. S. Cook, Phil. Mag. 12 [116] 379–91 (1965).

    Article  CAS  Google Scholar 

  4. R. I. Garbe, I, I. Soleshenko, and 0. A. Khaldie, Soviet Phy.-Solid State 7 [9] 2147–52 (1966).

    Google Scholar 

  5. A. S. Keh, J. Appl. Phys. 31 [9] 1538 - 45 (1960).

    Article  CAS  Google Scholar 

  6. A. A. Urusovskaya and V. G. Govorkov, Soviet Phy-Solid State 10 [4] 437–441 (1967).

    Google Scholar 

  7. D. J. Barber, J. Appl. Phys. 36 [10] 3342–49 (1965).

    Article  CAS  Google Scholar 

  8. R. M. Katz and R. L. Coble, J. Appl. Phys. 41 [4] 1871–73 (1970).

    Article  CAS  Google Scholar 

  9. T. S. Liu and C. H. Li, J. Appl. Phys. 35 [11] 3325–30 (1964).

    Article  CAS  Google Scholar 

  10. P. G. Riewald and L. H. vanVlack, J. Am. Ceram. Soc. 53 [4] 219 (1970).

    Article  CAS  Google Scholar 

  11. F. W. Vahldiek, S. A. Mersol, C. T. Lynch, Science 149 748 (13 Aug. 1965 ).

    Google Scholar 

  12. D. J. Rowcliffe and W. J. Warren, J. Mat. Sci. 5 345 (1970).

    Article  CAS  Google Scholar 

  13. G. G. Bentle, F. E. Ekstrom, and R. Chang, “Plastic Deformation of Uranium Carbide Crystals”, Atomics International Report NAA-SR-8108, 1963.

    Google Scholar 

  14. S. B. Luyckx, Acta Met. 18 233 (1970).

    Article  CAS  Google Scholar 

  15. T. Takahashi and E. J. Freise, Phil. Mag. 12 1 (1965).

    Google Scholar 

  16. L. Pons, p. 393 in Anisotropy in Single Crystal Refractory Compounds, Vol. 2 Ed. by F. Vahldiek and S. Mersol. Plenum Press, New York, 1968.

    Google Scholar 

  17. H. Palmour III; pp.320 in Mechanical Properties of Engineering Ceramics, Ed. by W. Kriegel and H. Palmour Ixl. Interscience, New York, 1961.

    Google Scholar 

  18. B. J. Hockey, Am. Ceram. Soc. Bull. 48 [4] 393 (1969).

    Google Scholar 

  19. G. F. Hurley, Met. Trans. 1, 2029 (1970).

    Article  CAS  Google Scholar 

  20. R. R. Vandervoort and W. L. Barmore, J. Appl. Phys. 37 [12] 4483 (1966).

    Article  CAS  Google Scholar 

  21. G. G. Bentle and K. J. Miller, J. Appl. Phys. 38 [11] 4248 (1967).

    Article  CAS  Google Scholar 

  22. W. F. Brace, Bull. Geol. Soc. Am. 69 [12-2] 1539 (1958).

    Google Scholar 

  23. O. W. Johnson, J. Appl. Phys. 37 [7] 2521 (1966).

    Article  CAS  Google Scholar 

  24. J. L. Daniel and S. Takahashi, “Fracture of Uranium Dioxide”, Proc. 1st Mat. Conf. on Fracture V3, 1967, Japanese Soc. for Strength and Fracture of Materials, 1966.

    Google Scholar 

  25. W. S. Rothwell, J. Am. Ceram. Soc. 47 [8] 409 (1964).

    Article  CAS  Google Scholar 

  26. E. Votava, S. Amelinckx, and W. Dekeyser, Acta Met. 389 (1955).

    Google Scholar 

  27. R. W. Sauer and E. J. Freise; p. 459 in Anisotropy in Single-Crystal Refractory Compounds, Vol. 2 Ed. by F. Vahldiek and S. Mersol. Plenum Press, New York, 1966.

    Google Scholar 

  28. S. A. Mersol, F. W. Vahldiek, and C. T. Lynch, Trans. Met. Soc. AIME, 233 1658 (1965).

    CAS  Google Scholar 

  29. C. O. Hülse, S. M. Copley, and J. A. Pask, J. Am. Ceram. Soc. 46 [7] 317–23 (1963).

    Article  Google Scholar 

  30. D. W. Budworth and J. A. Pask, J. Am. Ceram. Soc. 46 [11] 560–61 (1963).

    Article  CAS  Google Scholar 

  31. J. H. Westbrook, “Flow in Rock Salt Structures”, General Electric Research Laboratory Report No. 58-RL-2033, 1958.

    Google Scholar 

  32. R. W. Rice, “Strength-Grain Size Effects in Ceramics”, presented at the British Ceramic Society Conference on “Textural Studies of Ceramics”, London, Dec., 1970. Proceedings to be published.

    Google Scholar 

  33. A. H. Heuer and J. P. Roberts, Proc. Brit. Ceram. Soc. No. 6 17–27 (1966).

    Google Scholar 

  34. R. A. Alliegro, pp. 1125 - 30 in The Encyclopedia of Electrochemistry Ed. by C. A. Hampel. Reinhold Pub. Co., 1964.

    Google Scholar 

  35. G. R. Finlay, Chem. in Canada, 41–43 (Mar. 1952).

    Google Scholar 

  36. P. T. B. Shaffer, High-Temperature Materials. Plenum Press, New York, 1964.

    Google Scholar 

  37. W. S. Williams and R. D. Schaal, J. Appl. Phys. 33 [3] 955–62 (1962).

    Article  CAS  Google Scholar 

  38. E. Ryschkewitsch, “Properties and Physical Constants Data of High Refractory Materials”, Air Force Technical Report No. 6330, ( Aug. 1950.

    Google Scholar 

  39. K. M. Taylor and Camille Lenie, J. Electrochem. Soc. 107 [4] 308–14 (1960).

    Article  CAS  Google Scholar 

  40. J. V. E. Hansen, The Norton Co., Private communication, 1970.

    Google Scholar 

  41. Anonymous, Materials Engineering, 22 (June 1967).

    Google Scholar 

  42. J. Elston and C. Labbe, J. Nuc. Mat. 4 [2] 143–64 (1961).

    Article  Google Scholar 

  43. D. M. Chay, J. Palmour III, and W. W. Kriegel, J. Am. Ceram. Soc. 51 [1] 10–16 (1968).

    Article  Google Scholar 

  44. J. Handin, p. 223–89 in Handbook of Physical Constants. Ed by S. Clark, Jr. Geological Soc. Am. Memoir 97, New York, 1966.

    Google Scholar 

  45. C. E. Curtis and J. R. Johnson, J. Am. Ceram. Soc. 40 [2] 63–68 (1957).

    Article  CAS  Google Scholar 

  46. M. D. Burdick and H. S. Parker, J. Am. Ceram. Soc. 39 [5] 181–87 (1956).

    Article  CAS  Google Scholar 

  47. H. T. Hall, Science 169, 868 - 69 (Aug. 1970).

    Article  CAS  Google Scholar 

  48. W. G. Bradshaw, Lockheed Palo Alto Research Laboratory, private communication, 1970.

    Google Scholar 

  49. R. W. Rice, “Comparison of Knoop and Vickers Microhardness”, to be published.

    Google Scholar 

  50. P. J. Soltis, “Anisotropic Mechanical Behavior in Sapphire (AI2O3) Whiskers”, Naval Air Engineering Center, Aeronautical Material Lab. Rpt. No. NAE-AML-1831, April 1964.

    Google Scholar 

  51. P. D. Bayer and R. E. Cooper, J. Mat. Sci. 2 347–53 (1967).

    Article  CAS  Google Scholar 

  52. F. P. Mallinder and B. A. Proctor, Phil. Mag. 13 [121] 197–207 (Jan. 1966).

    Article  CAS  Google Scholar 

  53. F. P. Mallinder and B. A. Proctor, Proc. Brit. Ceram. Soc. No. 6, 9–16 (1966).

    Google Scholar 

  54. G. F. Hurley, “Progress Report for the VIII Refractory Commposites Working Group”, Tyco Lab. Inc., Waltham, Mass., 1970.

    Google Scholar 

  55. L. Mordfin and M. J. Kerper; pp. 243-61 in Mechanical and Thermal Properties of Ceramics. Ed. by J. B. Wachtman, Jr. U. S. Natl. Bur. of Stds., Special Pub. 303 May 1969.

    Google Scholar 

  56. J. D. Jenkins, pp.102–103 in Mechanical Properties of Non-Metallic Brittle Materials. Ed. by W. Walton. Interscience Pubi., London, 1958.

    Google Scholar 

  57. W. F. Brace, in Proceedings of a Conference on the State of Stress in the Earth’s Crust, 1963. See also J. C. Jaeger, p. 268-283 in Fracture 1st. Tewksbury Symposium, C. J. Osbom, Ed., Univ. of Melbourne, 1965.

    Google Scholar 

  58. J. H. Westbrook and P. J. Jorgensen, Am. Minerol. 53 1899–1909 (1968).

    CAS  Google Scholar 

  59. R. W. Rice, “Machining and Surface Workhardening of MgO”, submitted for publication.

    Google Scholar 

  60. B. J. Hockey, “Observations of Plastic Deformation in Alumina due to Mechanical Abrasion”, Presented at the 72nd Annual Meeting of the Am. Ceram. Soc. [Abstr. Am. Ceram. Soc. Bull. 49 (4) 498 (1970)].

    Google Scholar 

  61. W. F. Brace, J. Geophy. Res. 65 [6] 1773–88 (1960).

    Article  Google Scholar 

  62. F. Lendvay and M. V. Fock, J. Mat. Sci. [4] 747–52 (1969).

    Google Scholar 

  63. D. R. Tate, Trans. ASM 35 374 (1945).

    Google Scholar 

  64. L. P. Tarasov and N. W. Thibault, Trans. ASM 38 331 (1947).

    CAS  Google Scholar 

  65. B. O. Haglund, Prakt. Metallog. 7, 173–82 (April 1970).

    Google Scholar 

  66. C. F. Cline and J. S. Kahn, J. Electrochem. Soc. 110 [7] 773–75 (1963).

    Article  CAS  Google Scholar 

  67. F. Robertson, Geolog. Soc. Am. Bull. 72 621–37 (1961).

    Article  CAS  Google Scholar 

  68. Pyrolytic Graphite Engineering Handbook, General Electric Co. Schenectady, N. Y., 1963.

    Google Scholar 

  69. W. C. Riley, pp. 14 - 75 in Ceramics for Advanced Technologies. Ed. by J. E. Hove and W. C. Riley. John Wiley & Sons, Inc., New York, 1965.

    Google Scholar 

  70. R. W. Rice, “The Effect of Porosity on the Mechanical Properties of Ceramics”, to be published.

    Google Scholar 

  71. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals; pp. 167–176. Consultants Bureau, New York. 1964.

    Google Scholar 

  72. A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials; p. 159. John Wiley & Sons, New York, 1967.

    Google Scholar 

  73. D. Kalish, E. V. Clougherty, J. Ryan, “Fabrication of Dense Fine Grain Ceramic Materials”, Final report for Contract DA-19-066-AMC-283(X), 1966.

    Google Scholar 

  74. T. D. Gulden, J. Am. Ceram. Soc. 52 [11] 585 (1969).

    Article  CAS  Google Scholar 

  75. R. W. Bartlett and G. W. Martin, J. Appl. Phys. 39 [5] 2324 (Apr. 1969).

    Article  Google Scholar 

  76. J. Corteville, Compt. Rend. 260 [7] 4477–80 (Apr. 1965).

    CAS  Google Scholar 

  77. T. Simecek, “Twinning of CdTe Crystals”, Ceskoslov casopisfys 10 180-1 (1960). [Chemical Abs. 54:23573h)].

    Google Scholar 

  78. A. G. Fitzgerald and G. Thomas, Phy. Stat. Sol. 25 263 (1968).

    Article  CAS  Google Scholar 

  79. K.- D. Lyall and M. S. Paterson Acta Met. 14 371–83 (Mar. 1966).

    Google Scholar 

  80. E. Stofel and H. Conrad, Trans. Met. Soc. AIME 227 1053 (1963).

    CAS  Google Scholar 

  81. P. W. Bridgman,Studies in Large Plastic Flow and Fracture; p. 120 McGraw-Hill, New York, 1952.

    Google Scholar 

  82. M. L. Kronberg, p. 329 in Mechanical Properties of Engineering Ceramic. Ed. by W. W. Kriegel and H. Palmour III. Inter- science Pub., New York, 1961.

    Google Scholar 

  83. D. Griggs, Am. Min. 23 28–33 (1938).

    CAS  Google Scholar 

  84. D. W. Budworth and J. A. Pask, Trans. Brit. Ceram. Soc. 62 763 (1963).

    CAS  Google Scholar 

  85. C. O. Hülse, “Mechanical Properties of CaO Single Crystals”, to be publsihed.

    Google Scholar 

  86. A. G. Evans, C. Roy and P. L. Pratt, Proc. Brit. Ceram. Soc. No. 6 173–188 (1966).

    Google Scholar 

  87. D. W. Lee and J. S. Haggerty, J. Am. Ceram. Soc. 52 [12] 641–47 (1969).

    Article  CAS  Google Scholar 

  88. D. K. Smith, Jr. and S. Weissman, J. Am. Ceram. Soc. 51 [6] 33–36 (1968).

    Google Scholar 

  89. D. H. Chung and W. R. Buessoti, pp. 217–45 in Anisotropy in Single-Crystal Refractory Compounds, Vol. 2. Edby F. Vahldiek and S. Mersol. Plenum Press, New York, 1968.

    Google Scholar 

  90. D. P. H. Hasselman, p. 247-65, ibid.

    Google Scholar 

  91. H. P. Kirchner and R. M. Gruver, J. Am. Ceram. Soc. 53 [5] 232–36 (1970).

    Article  CAS  Google Scholar 

  92. D. M. Marsh, “Plastic Flow in Glass”, Proc. Roy. Soc. (London) 279-A [1378] 420–35 (1964).

    Google Scholar 

  93. D. M. Marsh, pp. 143–55 in Fracture of Solids. Ed. by D. C. Drucker and J. J. Gilman. Interscience Publishers, New York, 1963.

    Google Scholar 

  94. E. Ryschkewitsch, Ber. Deutsch. Keram. Gesel 22 [2] 54–65 (1941).

    Google Scholar 

  95. E. Ryschkewitsh, J. Am. Ceram. Soc. 36 [2] 65–68 (1953).

    Article  Google Scholar 

  96. N. Igata-, R. R. Hasiguti, and K. Domotot pp.883–98 in Proc. 1st Int. Conf. on Fracture, Vol. 2, Japanese Society for Strength and Fracture of Materials, 1966.

    Google Scholar 

  97. F. P. Knudsen, J. Am. Ceram. Soc. 42 [8] 376–390 (1959).

    Article  CAS  Google Scholar 

  98. F. P. Knudsen, H. S. Parker, M. O. Burdick, J. Am. Ceram. Soc. 43 [12] 641–47 (1960).

    Article  CAS  Google Scholar 

  99. V. Mandorf and J. Hartwig; pp. 455 - 66 in High Temperature Materials II. Ed. by G. Ault, W. Varclay, and H. Munger, Interscience Publishers, New York, 1963.

    Google Scholar 

  100. H. E. Exner and J. Gurland, Pwd. Met. 13 [75] 13–31 (1970).

    CAS  Google Scholar 

  101. D. I. Matkin and J. E. Caffyn, Trans. Brit. Ceram. Soc. 62 753–61 (1963).

    CAS  Google Scholar 

  102. N. S. Stoloff and T. L. Johnston, “Formation and Structure of Alloy Layers in the MgO-Mn Systems” presented at the 66th Annual American Ceramic Society meeting, April 1964 [Abstr., Am. Ceram. Soc. Bui. 43 [3] 339 (1964)].

    Google Scholar 

  103. G. W. Groves and M. E. Fine, J. Appl. Phys. 35 [12], 3587–93 (1964).

    Article  CAS  Google Scholar 

  104. R. W. Rice, J. G. Hunt, G. I. Friedman and J. L. Sliney, “Identifying Optimum Parameters of Hot Extrusions”, Final report for NASA Contract NAS7-276, Aug. 1968.

    Google Scholar 

  105. E. Camall, Eastman Kodak Company, private communication, 1970.

    Google Scholar 

  106. D. A. Buckner, H. C. Hafner, and N. J. Kreidl, J. Am. Ceram. Soc. 45 [9] 435–38 (1962).

    Article  CAS  Google Scholar 

  107. M. Tashiro, “Chemical composition of glass - ceramics, part two” The Glass Ind. p. 428, Aug. 1966.

    Google Scholar 

  108. W. F. Brace, Penn. State Univ. Mineral Expt. Sta. Bui. 76 99–103 (1961).

    Google Scholar 

  109. I. Soroka and P. J. Sereda, J. Am. Ceram. Soc. 51 [6] 337–41 (1968).

    Article  CAS  Google Scholar 

  110. E. Hoek and Z. T. Bieniawski,Intl. J. Fract. Mechan. 1 [3] 137–55 (Sept. 1965).

    Google Scholar 

  111. J. S. Rinehart, “Fracture of Rocks”,Intl. J. Fract. Mechan. 2 [3] 534–51 (Sept. 1966).

    Google Scholar 

  112. R. J. Stokes5 pp. 379 - 405 in Ceramic Microstructures, Their Analysis, Significance and Production. Ed. by R. Fulrath and J. Pask. John Wiley & Sons, New York, 1968.

    Google Scholar 

  113. R. B. Day and R. J. Stokes; pp.355-86 in Materials Science Research, Vol. 3. Edby W. W. Kriegel and H. Palmour III. Plenum Press, New York, 1966.

    Google Scholar 

  114. R. J. Stokes and C. H. Li;pp. 133-57 in Materials Science Research, Vol. 1. Edby H. Stadelmaier and W. Austin. Plenum Press, New York, 1963.

    Google Scholar 

  115. A. R. C. Westwood, Phil. Mag. 6 [62] 195–200 (Feb. 1961).

    Article  CAS  Google Scholar 

  116. T. L. Johnston, R. J. Stokes, and C. H. Li, Phil. Mag. 7 [73] 23–34 (Jan. 1962).

    Article  CAS  Google Scholar 

  117. T. Auten, Case Western Reserve U., private communication, 1970.

    Google Scholar 

  118. M. S. Paterson and C. W. Weaver, J. Am. Ceram. Soc. 53 [8] 463–71 (1970).

    Article  CAS  Google Scholar 

  119. A. G. Evans, C. Roy, P. L. Pratt, Proc. Brit. Ceram. Soc. 6, 173 (June 1966).

    Google Scholar 

  120. J. J. Oilman, J. Appl. Phys. 41 [4] 1664 - 66 (1970).

    Article  Google Scholar 

  121. C. W. Weaver and M. S. Paterson, J. Am. Ceram. Soc. 52 [6] 293 - 302 (1969).

    Article  CAS  Google Scholar 

  122. A. S. Wronski and A. C. Chilton, Scripta Metall. 3 394 - 400 (1969).

    Article  Google Scholar 

  123. D. Francois and T. R. Wilshaw, J. Appl. Phys. 39 [9] 4170 - 77 (1968).

    Article  CAS  Google Scholar 

  124. A. G. Atkins and D. Tabor, J. Inst. Metals 94 107 - 115 (1966).

    Google Scholar 

  125. A. G. Atkins, A. Silverio, and D. Tabor, J. Inst. Metals 94, 369 - 78 (1966).

    CAS  Google Scholar 

  126. A. G. Atkins and D. Tabor, Proc. Roy. Soc. (London) A292, 441 - 459 (1966).

    Article  CAS  Google Scholar 

  127. A. G. Atkins and D. Tabor, J. Am. Ceram. Soc. 50 [4] 195 - 98 (1967).

    Article  CAS  Google Scholar 

  128. R. D. Koester and D. P. Moak, J. Am. Ceram. Soc. 50 [6] 290 - 96 (1967).

    Article  CAS  Google Scholar 

  129. H. Palmour, III, “Flow and Fracture in Spinel Structured Ceramics”, Final Report, Contract DA31-124-ARD-D-207, Jan. 1970.

    Google Scholar 

  130. J. H. Westbrook, Rev. Hautes Temper. Refract. 3 47–57, (1966).

    Google Scholar 

  131. P. R. V. Evans, “Effect of Microstructure”; pp.164-202 in Studies of The Brittle Behavior of Ceramic Materials, Ed. by N. A. Weil, Report ASD-TR-61-628, Part II, Contract AF 33(6l6)-7465, April 1963.

    Google Scholar 

  132. R. R. Matheson, Ceramic Age, p. 54–58, June 1963.

    Google Scholar 

  133. R. J. Charles, “Static Fatigue; Delayed Fracture”, p. 468–519 in Ref. 131.

    Google Scholar 

  134. R.Rice, “Tensile Strength and Fracture of AI2O3,” to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this paper

Cite this paper

Rice, R.W. (1971). The Compressive Strength of Ceramics. In: Kriegel, W.W., Palmour, H. (eds) Ceramics in Severe Environments. Materials Science Research, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3141-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3141-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3143-8

  • Online ISBN: 978-1-4684-3141-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics