Regulation of Brain Dopamine Turnover Rate: Pharmacological Implications

  • E. Costa
  • M. Trabucchi


The ability of brain dopaminergic neurons to maintain the concentration of their transmitter at steady state in the face of continuous changes of their activity patterns depends critically upon the way in which metabolic enzymes, storage mechanisms, and regulatory dopamine receptors are organized in dopaminergic synapses (Costa, 1973; Costa and Meek, 1974, Glowinski 1973; Carlsson et al.,1972a). There is incomplete information concerning this organization, and there are only scant details concerning their molecular arrangements and interactions. Thus, the current understanding makes the study of dopaminergic function a most ambitious undertaking. Indeed, the problem would appear to be insuperable unless conceptual models can be made available to deal with the gaps in our knowledge.


Tyrosine Hydroxylase Turnover Rate Brain Nucleus Gaba Neuron Presynaptic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Bunney, B. S., 1973, Central dopaminergic neurones: neurophysiological identification and responses to drugs, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), Pergamon Press, New York, pp. 643–648.Google Scholar
  2. Andén, N. E., and Stock, G., 1973, Effect of clozapine on the turnover of dopamine in the treatment with neuroleptic and anti-acetylcholine drugs, J. Pharm. Pharmacol. 24: 905.CrossRefGoogle Scholar
  3. Andén, N. E., and Stock, G., 1973, Effect of closapine on the turnover of dopamine in the corpus striatum and in the limbic system, J. Pharm. Pharmacol. 25: 346.PubMedCrossRefGoogle Scholar
  4. Andén, N. E., Bedard, P., Fuxe, K., and Ungerstedt, U., 1972, Early and selective increase of brain dopamine levels after axotomy, Experientia 28: 300.PubMedCrossRefGoogle Scholar
  5. Andén, N. E., Magnusson, T., and Stock, G., 1973, Effect of drugs influencing monoamine mechanisms on the increase in brain dopamine produced by Axotomy or treatment with ‘y-hydroxybutyric acid, Naunyn-Schmiedebergs. Arch. Exptl. Pathol. Pharmakol. 278: 363.CrossRefGoogle Scholar
  6. Andén, N. E., Rubenson, A., Fuxe, K., and Hökfelt, T., 1967, Evidence for dopamine receptor stimulation by apomorphine, J. Pharm. Pharmacol. 19: 627.PubMedCrossRefGoogle Scholar
  7. Bunney, B. S., Aghajanian, G. K., and Roth, R. H., 1973a, Comparison of effects of L-Dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons, Nature (New Biol.) 245: 123.Google Scholar
  8. Bunney, B. S., Walters, J. R., Roth, R. H. and Aghajanian, G. K., 1973b, Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exptl. Therap. 185: 560.Google Scholar
  9. Butcher, S. G., and Butcher, L. L., 1974, Origin and modulation of acetylcholine activity in the neostriatum, Brain Res. 71: 167.PubMedCrossRefGoogle Scholar
  10. Carenzi, A., Guidotti, A., Revuelta, A., and Costa, E., 1975, The action of morphine and viminol on the dopaminergic neurons of rat striatum. J. Pharmacol. Exptl. Therap. (accepted for publication).Google Scholar
  11. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20: 140.Google Scholar
  12. Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., and Atack, C. V., 1972a, Regulation of monoamine metabolism in the central nervous system, Pharmacol. Rev. 24: 371.Google Scholar
  13. Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M., and Atack, C. V., 19726, Simultaneous measurements of tyrosine hydroxylase and triptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase, Naunyn-Schmiedebergs Arch. Exptl. Pathol. Pharmakol. 275: 153.Google Scholar
  14. Cattabeni, F., Koslow, S. H., and Costa, E., 1972, Gas chromatography-mass fragmentography in a new approach to the estimation of amines and amine turnover, in: Advances in Biochemical Psychopharmacology Vol. 6 (E. Costa, L. Iversen, and Paoletti, R., eds.), Raven Press, New York.Google Scholar
  15. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, F. L. and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. (U.S.) 71: 1113.CrossRefGoogle Scholar
  16. Corrodi, H., Fuxe, K., and Hökfelt 1967, The effect of psychoactive drugs on the central monoamine neurons, European J. Pharmacol 11: 363.Google Scholar
  17. Costa, E., 1972, Appraisal of current methods to estimate the turnover rate of serotonin and catecholamines on human brain, in: Advances in Biochemical Psychopharmacology, Vol. 4, (E. Costa and M. S. Ebadi, eds.), Raven Press, New York.Google Scholar
  18. Costa, E., 1973, The fundamental role of immediate precursors to estimate turnover rate of catecholamines by isotopic labeling, in: Pharmacology and the Future of Man. Vol. 4 ( F. E. Bloom and G. H. Acheson, eds.), pp. 215–226, S. Karger Publishing Co., Basel.Google Scholar
  19. Costa, E., and Meek, J. L., 1974, Regulation of biosynthesis of catecholamines and serotonin in CNS, Ann. Rev. Pharmacol. 14: 491.CrossRefGoogle Scholar
  20. Costa, E., Green, A. R., Koslow, S. H., LeFevre, H. F., Revuelta, A. V., and Wang, C., 1972, Dopamine and norepinephrine in noradrenergic axons: A study in vivo of their precursor product relationship by mass fragmentography and radiochemistry, Pharmacol. Rev. 24: 167.Google Scholar
  21. Costa, E., Carenzi, A., Guidotti, A., and Revuelta, A., 1973, Narcotic analgesics and the regulation of neuronal catecholamine stores, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, ed.), pp. 1003–1010, Pergamon Press, New York.Google Scholar
  22. Costa, E., Guidotti, A., and Zivkovic, B., 1974, Short-and long-term regulation of tyrosine hydroxylase, in: Adv. Biochem. Psychopharmacol. 12: 161.Google Scholar
  23. Coyle, J. T., and Snyder, S. H., 1969, Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action, Science 166: 899.PubMedCrossRefGoogle Scholar
  24. Descarries, L., and Lapierre, Y., 1973, Noradrenergic axon terminals in the cerebral cortex of rat. Radioautographic visualization after topical application of DL-[3H] norepinephrine, Brain Res. 51: 141.PubMedCrossRefGoogle Scholar
  25. Dostrovsky, J., and Pomerans, B., 1973, Morphine blockade of amino acid putative transmitters on cat spinal cord sensory interneurons. Nature (New Biol.) 246: 222.Google Scholar
  26. Doteuchi, M., Wang, C., and Costa, E., 1974, Compartmentation of dopamine in rat striatum, Mol. Pharmacol. 10: 225.Google Scholar
  27. Fonnum, F., Grofova, I., Riuvik, E., Storm-Mathisen, J., and Walbey, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res. 71: 77.PubMedCrossRefGoogle Scholar
  28. Garelis, E., and Neff, N. H., 1974, Cyclic adenosine monophosphate: collective increase in caudate nucleus after administration of L-dopa, Science 183: 532.PubMedCrossRefGoogle Scholar
  29. Gessa, G. L., Vargiu, L., Crabai, F., Boero, G. C., Caboni, G., and Camba, R., 1966, Selective increase of brain dopamine induced by ry-hydroxybutyrate, Life Sci. 5: 1921.CrossRefGoogle Scholar
  30. Gey, K. F., and Pletscher, A., 1968, Acceleration of turnover of “C-catecholamines in rat brain by chlorpromazine, Experientia 24: 335.PubMedCrossRefGoogle Scholar
  31. Glowinski, J., 1973, The “functional pool” in central catecholaminergic neurons, in: Pharmacology and the Future of Man ( F. E. Bloom and G. H. Achesson, eds.), pp. 204–214, Pergamon Press, New York.Google Scholar
  32. Groppetti, A., and Costa, E., 1969, Tissue concentrations of p-hydroxynorephedrine in rats in- jected with d-amphetamine, effect of pretreatment with desipramine, Life Sci. 8: 653.PubMedCrossRefGoogle Scholar
  33. Guidotti, A., Cheney, D. L., Trabucchi, M., Doteuchi, M., Wang, C., and Hawkins, P. A., 1974, Focussed microwave radiation: a technique to minimize postmortem changes of cyclic nucleotides, dopa, and choline and to preserve brain morphology, Neuro-pharmacology 13: 1115.Google Scholar
  34. Horn, A. S., Cuello, A. C., and Miller, R. J., 1974, Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem. 22: 265.PubMedCrossRefGoogle Scholar
  35. Iversen, L. L., and Glowinski, J., 1966, Rate of turnover of catecholamines in various brain regions, J. Neurochem. 13: 671.PubMedCrossRefGoogle Scholar
  36. Javoy, F., and Glowinski, J., 1971, Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum, J. Neurochem. 18: 1305.PubMedCrossRefGoogle Scholar
  37. Javoy, F., Agid, D., Bouvet, L., and Glowinski, J., 1974, In vivo estimation of tyrosine hydroxylation in the dopaminergic terminals of the rat neostriatum, J. Pharm. Pharmacol. 26: 179.PubMedCrossRefGoogle Scholar
  38. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase on caudate nucleus of rat brain and its similarity to the “dopamine receptor, ” Proc. Natl. Acad. Sci. (U.S.) 69: 2149.CrossRefGoogle Scholar
  39. Kehr, W., Carlsson, A., Lindqvist, M., Magunsson, T., and Atack, C., 1972, Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity, J. Pharm. Pharmacol. 24: 744.PubMedCrossRefGoogle Scholar
  40. Kemp, J. M., and Powell, T. P. S., 1971, The structure of the caudate nucleus of the cat: light and electron microscopy, Phil. Trans. Roy. Soc. Lond. Ser. B. 262: 383.CrossRefGoogle Scholar
  41. Koslow, S. H., Cattabeni, F., and Costa, E., 1972, Norepinephrine and dopamine: assay by mass fragmentography in the picomole range, Science 176: 177.PubMedCrossRefGoogle Scholar
  42. Koslow, S. H., Racagni, G., and Costa, E., 1974, Mass fragmentographic measurement of NE, DA, 5HT, and ACh in seven discrete nuclei of the rat tele-diencephalon, Neuro-pharmacology 13: 1123.Google Scholar
  43. Kuczenski, R. T., 1973, Striatal tyrosine hydroxylase with high and low affinity for tyrosine: implications for the multiple-pool concept of catecholamines, Life Sci. 13: 247.PubMedCrossRefGoogle Scholar
  44. Kuczenski, R., 1975, Effect of catecholamine releasing agents on synaptosomal DA biosynthesis: multiple pools of DA or multiple forms of tyrosine hydroxylase, Neuro-pharmacology 14: 1.Google Scholar
  45. Kuczenski, R. T., and Mandell, A. J., 1972, Regulating properties of soluble and particulate rat brain tyrosine hydroxylase, J. Biol. Chem. 247: 3114.PubMedGoogle Scholar
  46. Kuschinsky, K., and Hornykiewicz, O., 1972, Morphine catalepsy in the rat: relation to striatal dopamine metabolism, European J. Pharmacol. 19: 119.Google Scholar
  47. Langer, S. Q., 1973, The regulation of transmitter release elicited by nerve stimulation through a presynaptic feed-back mechanism, in: Frontiers in Catecholamine Research ( E. Usdin and S. Synder, eds.), pp. 543–549, Pergamon Press, New York.Google Scholar
  48. LeFevre, H. F., Costa, E., Koslow, S. H., 1975, Fed. Proc. 34: 778.Google Scholar
  49. Lynch, G. S., Lucas, P. A., and Deadwyler, S. A., 1972, The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat, Brain Res. 45: 617.PubMedCrossRefGoogle Scholar
  50. Lust, W. D., Passouneau, J. V., and Veech, R. L., 1973, Cyclic adenosine monophosphate, metabolites, and phosphorylase in neural tissue. A comparison of methods of fixation, Science 181: 280.PubMedCrossRefGoogle Scholar
  51. McGeer, E. G., Fibiger, H. C., McGeer, P. L., and Brooke, S., 1973, Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransection or 6hydroxydopamine administration, Brain Res. 52: 289.PubMedCrossRefGoogle Scholar
  52. Miller, R. J., and Hiley, C. R., 1974, Antimuscarinic properties of neuroleptics and drug-induced parkinsonism, Nature 248: 596.PubMedCrossRefGoogle Scholar
  53. Neff, N. H., and Costa, E., 1967, Effect of tricyclic antidepressant and chlorpromazine on brain catecholamine systems, in: Proceedings of the Internation Symposium on Antidepressant Drugs ( S. Garattini and M. N. C. Burkes, eds.), pp. 28–34, Excerpta Med. Foundation, New York.Google Scholar
  54. Neff, N. H., Lin, R. C., Ngai, S. H., and Costa, E., 1969, Turnover rate measurements of brain serotonin in anesthesized rats, Adv. Biochem. Psychopharmacol. 1: 92.Google Scholar
  55. Neff, N. H., Spano, P. F., Groppetti, A., Wang, C. T., and Costa, E., 1971, A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain, J. Pharmacol. Exptl. Therap. 176: 701.Google Scholar
  56. Roth, R. H., and Surh, Y., 1970, Mechanism of the 7-hydroxybutyrate-induced increase in brain dopamine and its relationship to sleep, Biochem. Pharmacol. 19: 3001.Google Scholar
  57. Roth, R. H., Walters, J. R., and Aghajanian, G. K. (1973) Effect of impulse flow in the release and synthesis of dopamine in the rat striatum, in: Frontiers in Catecholamine Research ( E. Usdin and S. Synder, eds.), pp. 567–574, Pergamon Press, New York.Google Scholar
  58. Roth, R. H., Walters, J. R., and Morgenroth, V. H., 1974, Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons, Adv. Biochem. Psychopharmacol. 12: 369.Google Scholar
  59. Sedvall, G. C., Weise, V. K., and Kopin, I. J., 1968, The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity, J. Pharmacol. Exptl. Therap. 159: 274.Google Scholar
  60. Sedvall, G., Mayevsky, A., Fri, C. G., Sjöquist, B., and Samuel, D., 1973a, The use of stable oxygen isotopes for labeling of homovanillic acid in rat brain in vivo, Adv. Biochem. Psychopharmacol. 7: 57.Google Scholar
  61. Sedvall, G., Mayevsky, A., Samuel, D., and Fric, G. (1973b) Oxygen-18 in measurement of dopamine turnover in rat brain, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 1071–1075, Pergamon Press, New York.Google Scholar
  62. Stadler, H., Lloyd, K. G., Gadea-Ciria, M., and Bartholini, G., 1973, Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apormorphine, Brain Res. 55: 476.PubMedCrossRefGoogle Scholar
  63. Stille, G., and Hippius, H., 1971, Kritische Stellungsnahme zum Begriff der Neuroleptika, Pharmakopsychiatry Neuropsychopharmakol. 4: 182.Google Scholar
  64. Stille, G., Lavener, H., and Eichenberger, E., 1971, The pharmacology of 8-chloro-ll-(4methyl-l-piperazinyl) 5-H-Dibenzo [b, e,] [1, 4] diazepine (clozapine), Farmaco (Sci.) 26: 603.Google Scholar
  65. Thierry, A. M., and Glowinski, J., 1973, Existence of dopaminergic nerve terminals in the rat cortex, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 649–651, Pergamon Press, New York.Google Scholar
  66. Udenfriend, S., 1966, Tyrosine hydroxylase, Pharmacol. Rev. 18: 43.Google Scholar
  67. Udenfriend, S., Zaltzan-Nirenberg, P., and Nagatsu, T., 1965, Inhibitors of purified beef adrenal tyrosine hydroxylase, Biochem. Pharmacol. 14: 837.Google Scholar
  68. Ungerstedt, U., 1971, Stereotoxic mapping of the monoamine pathways in the rat brain, ActaGoogle Scholar
  69. Physiol. Scand. Suppl. 367: 1.Google Scholar
  70. Physiol. Scand. Suppl. 367: 1.Google Scholar
  71. Wand, P., Kuschinsky, K., and Sontag, K.-H., 1973, Morphine-induced muscular rigidity in rats, European J. Pharmacol. 24: 189.Google Scholar
  72. Weissman, A., and Koe, B. K., 1965, Behavioral effect of L-a-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, Life Sci. 4: 1037.PubMedCrossRefGoogle Scholar
  73. Yamamura, H. I., Kuhar, M. J., Greenberg, D., and Snyder, S. H., 1974, Muscarinic cholinergic receptor binding: regional distribution in monkey brain, Brain Res. 66: 541.CrossRefGoogle Scholar
  74. Zivkovic, B., Guidotti, A., and Costa, E., 1974, Effect of neuroleptics on striatal tyrosine hydroxylase: changes in the affinity for the pteridine cofactor, Mol. Pharmacol. 10: 727.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • E. Costa
    • 1
  • M. Trabucchi
    • 1
  1. 1.Laboratory of Preclinical Pharmacology National Institute of Mental HealthSaint Elizabeths HospitalUSA

Personalised recommendations