Mammalian Biosynthesis of Potential Psychotogens Derived from Dopamine

  • Arnold J. Friedhoff
  • Jack W. Schweitzer


Normal mental functions can be disrupted by many kinds of drugs. Hallucinogens are of special interest because of their ability to impair higher centers without producing substantial effect on other functions of the central nervous system. While the mechanism of action of hallucinogens has not been clarified, the striking structural resemblance between certain of these agents and several central nervous system transmitters has not gone unnoticed (Osmond and Smythies, 1952; Snyder and Merril, 1965). Mescaline, for example, bears a strong structural similarity to dopamine, and, among indoles, N,N-dimethyltryptamine and bufotenin resemble serotonin (Figure 1). The hallucinogenic properties of these biogenic amine congeners are well documented for mescaline (Kapadia and Fayez, 1970) and for the indoles (Fujimori and Alpers, 1970).


Biogenic Amine COMT Activity Catecholamine Metabolite Cetic Acid Hallucinogenic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici, M., Rodriquez de Lores Arnaiz, G., and De Robertis, E., 1965, Catechol-O-methyltransferase in nerve ending of rat brain, life Sci. 4: 1954Google Scholar
  2. Armstrong, M. D., McMillan, A., and Shaw, K. N. F., 1957, 3-methoxy-4-hydroxy-D-mandelic Acid, a urinary metabolite of norepinephrine, Biochim. Biophys. Acta 25: 422.Google Scholar
  3. Assicot, M., and Bohuon, C., 1971, Presence of two distinct catechol-O-methyltransferase activities in red blood cells, Biochimie 53: 871.PubMedCrossRefGoogle Scholar
  4. Axelrod, J., 1957, O-Methylation of epinephrine and other catechols in vitro and in vivo, Science 126: 400.PubMedCrossRefGoogle Scholar
  5. Axelrod, J., 1961, Enzymatic formation of psychotomimetic metabolites from normally occurring compounds, Science 134: 343.PubMedCrossRefGoogle Scholar
  6. Axelrod, J., 1965, The formation and metabolism of physiologically active compounds by Nand O-methyltransferases, in: Transmethylation and Methionine Biosynthesis ( S. K. Shapiro, and F. Schlenk, eds.), p. 71, University of Chicago Press, Chicago.Google Scholar
  7. Axelrod, J., and Vesell, E. S., 1970, Heterogeneity of N- and O-methyltransferases, Mol. Pharmacol. 6: 78.Google Scholar
  8. Barbeau, A., Singh, P., and Joubert, M., 1966, Effect of 3,4-dimethoxyphenylethylamine injections on catecholamine metabolism in rats and monkeys, Life Sci. 5: 757.PubMedCrossRefGoogle Scholar
  9. Benington, F., and Morin, R. D., 1968, Enzymatic 5-hydroxylation of 3-methoxytyramine Experientia 24:33.Google Scholar
  10. Bindler, E., Sanghvi, I., and Gershon, S., 1968, Pharmacological and behavioral characteristics of 3,4-dimethoxyphenylethylamine and its N-acetyl derivative, Arch. Intern. Pharmacodyn. 176:1.Google Scholar
  11. Blaschke, E., and Hertting, G., 1971, Enzymic methylation of L-ascorbic acid by catechol-Omethyltransferase, Biochem. Pharmacol. 20: 1363.CrossRefGoogle Scholar
  12. Bridger, W. H., and Mandel, I. J., 1967, The effects of dimethoxyphenylethylamine and mescaline on classical conditioning in rats as measured by the potentiated startle response, Life Sci. 6: 775.PubMedCrossRefGoogle Scholar
  13. Cantoni, G. L., 1952, The nature of the active methyl donor formed enzymatically from Lmethionine and adenosinetriphosphate, J. Am. Chem. Soc. 74: 2942CrossRefGoogle Scholar
  14. Charalampous, K. D., 1971, Comparison of metabolism of mescaline and 3,4dimethoxyphenylethylamine in humans, Behay. Neuropsychiat. 2: 26.Google Scholar
  15. Charalampous, K. D., and Tansey, L. W., 1967, Metabolic fate of 13-(3,4-dimethoxyphenyl)ethylamine in man, J. Pharmacol. Exptl. Therap. 155: 318.Google Scholar
  16. Chang, T., Okerholm, R. A., and Glazko, A. J., 1972, A 3-O-methylated catechol metabolite of diphenylhydantoin (dilantin) in rat urine, Res. Commun Chem. Path. Pharmacol. 4: 13.Google Scholar
  17. Cohn, C. K., Dunner, D. L., and Axelrod, J., 1970, Reduced catechol-O-methyltransferase activity in red blood cells of women with primary affective disorder, Science 170: 1323.PubMedCrossRefGoogle Scholar
  18. Creveling, C. R., Morris, N., Shimizu, H., Ong, H. H., and Daly, J. W., 1972, Catechol-Omethyltransferase IV. Factors affecting m-and pémethylation of substituted catechols, Mol. Pharmacol. 8: 398.PubMedGoogle Scholar
  19. Daly, J. W., and Manian, A. A., 1969, The action of catechol-O-methyltransferase on 7,8dihydroxychlorpromazine-formation of 7-hydroxy-8-methoxychlorpromazine and 8hydroxy-7-methoxy chlorpromazine, Biochem. Pharmacol. 18: 1235.PubMedCrossRefGoogle Scholar
  20. Daly, J., Axelrod, J., and Witkop, B., 1962, Methylation and demethylation in relation to the in vitro metabolism of mescaline, Ann. N.Y. Acad. Sci. 96: 37.PubMedCrossRefGoogle Scholar
  21. Daly, J., Inscoe, J. K., and Axelrod, J., 1965, The formation of O-methylated catechols by microsomal hydroxylation of phenol and subsequent enzymatic catechol O-methylation. Substrate specificity, J. Med. Chem. 8: 153.PubMedCrossRefGoogle Scholar
  22. Dear, E. M. A., and Malcolm, J. L., 1967, A study of the effect of 3,4dimethoxyphenylethylamine on cortical evoked potentials in the rat, Intern. J. Neuropharmacol. 6: 529.CrossRefGoogle Scholar
  23. Deguchi, T., and Barchas, J., 1971, Inhibition of transmethylations of biogenic amines by Sadenosylhomocysteine, J. Biol. Chem. 246: 3175.PubMedGoogle Scholar
  24. Ernst, A. M., 1965, Relation between the structure of certain methoxyphenethylamine derivatives and the occurrence of a hypokinetic rigid syndrome, Psychopharmacologia 7: 383.PubMedCrossRefGoogle Scholar
  25. Faurbye, A., 1968, The role of amines in the etiology of schizophrenia, Comprehensive Psy-chiat. 9:155.CrossRefGoogle Scholar
  26. Folkers, K., 1967, Research on coenzyme Q, in: Phenolic Compounds and Metabolic Regulation (B. J. Finkle, and V. C. Runeckles, eds.), p. 94, Appleton-Century-Crofts, New York.Google Scholar
  27. Frere, J. M., and Verly, W. G., 1971, Catechol-O-methyltransferase. The para-and meta-O-methylations of noradrenaline, Biochim. Biophys. Acta 235: 73.PubMedGoogle Scholar
  28. Friedhoff, A. J., and Alpert, M., 1973, A dopaminergic-cholinergic mechanism in production of psychotic symptoms, Biol. Psychiat. 6: 165.PubMedGoogle Scholar
  29. Friedhoff, A. J., and Hollister, L. E., 1966, Comparison of the metabolism of 3,4-dimethoxyphenylethylamine and mescaline in humans, Biochem. Pharmacol. 15: 269.PubMedCrossRefGoogle Scholar
  30. Friedhoff, A. J., and Schweitzer, J. W., 1968, An effect of N-acetyl-dimethoxyphenethylamine, Diseases Nervous System 29: 455.Google Scholar
  31. Friedhoff, A. J., and Van Winkle, E., 1962, Isolation and characterization of a compound from the urine of schizophrenics, Nature 194: 897.CrossRefGoogle Scholar
  32. Friedhoff, A. J., and Van Winkle, E., 1963, Conversion of dopamine to 3,4-dimethoxyphenylacetic acid in schizophrenic patients, Nature 199: 1271.PubMedCrossRefGoogle Scholar
  33. Friedhoff, A. J., and Van Winkle, E., 1964, Biological O-methylation and schizophrenia, Psychiat. Res. Rep. Am. Psychiat. Assoc. 19: 149.Google Scholar
  34. Friedhoff, A. J., Schweitzer, J. W., and Miller, J. C., (1972a). The enzymatic formation of 3,4di-O-methylated dopamine metabolites by mammalian tissues, Res. Commun Chem. Path. Pharmacol. 3: 293.Google Scholar
  35. Friedhoff, A. J., Schweitzer, J. W., and Miller, J., 1972b, Biosynthesis of mescaline and Nacetylmescaline by mammalian liver, Nature 237: 454.PubMedCrossRefGoogle Scholar
  36. Friedhoff, A. J., Schweitzer, J. W., Miller, J. C., and Van Winkle, E., 1972c, Guaiacol-Omethyltransferase: A mammalian enzyme capable of forming di-O-methylcatecholamine derivatives, Experientia 28: 517.PubMedCrossRefGoogle Scholar
  37. Fujimori, M., and Alpers, H. S., 1970, Psychotomimetic compounds in man and animals, in: Biochemistry, Schizophrenias, and Affective Illnesses, ( H. E. Himwich, ed.), p. 361, Williams and Wilkins Co., Baltimore.Google Scholar
  38. Gustayson, K. H., Wetterberg, L., Backstrom, M., and Ross, S. B., 1973, Catechol-O-methyl-transferase activity in erythrocytes in Down’s syndrome, Clin. Genet. 4: 279.CrossRefGoogle Scholar
  39. Hartley, R., and Smith, J. A., 1973, Formation in vitro of N-acetyl-3,4-dimethoxyphenethylamine by pineal hydroxyindole-O-methyltransferase, Biochem. Pharmacol. 22: 2425.PubMedCrossRefGoogle Scholar
  40. Hollister, L. E., and Friedhoff, A. J., 1966, Effects of 3,4-dimethoxyphenylethylamine in man, Nature 210: 1377.PubMedCrossRefGoogle Scholar
  41. Kapadia, G. J., and Fayez, M. B. E., 1970, Peyote constituents: chemistry, biogenesis and biological effects, J. Pharm. Sci. 59: 1699.PubMedCrossRefGoogle Scholar
  42. Levis, D. J., and Caldwell, D. F., 1971, The effects of a low dose of mescaline and 3,4dimethoxyphenylethylamine under two levels of adversive stimulation, Biol. Psychiat. 3: 251.PubMedGoogle Scholar
  43. Mandell, A. J., and Morgan, M., 1970, Human brain enzyme makes indole hallucinogens, Proc. Am. Psycho!. Assoc. p. 228.Google Scholar
  44. Masri, M. S., Robbins, D. J., Emerson, O. H., and De Eds, F., 1964, Selective para-or metaO-methylation with catechol-O-methyltransferase from rat liver, Nature 202: 878.PubMedCrossRefGoogle Scholar
  45. Matthysse, S., and Baldessarini, R. J., 1972, S-Adenosylmethionine and catechol-O-methyltransferase in schizophrenia, Am. J. Psychiat. 128: 1310.PubMedGoogle Scholar
  46. McKenzie, G. M., and White, H. L., 1973, Evidence for the methylation of apomorphine by catechol-O-methyltransferase in vivo and in vitro, Biochem. Pharmacol. 22: 2329.Google Scholar
  47. Osmond, H., and Smythies, J., 1952, Schizophrenia: a new approach, J. Mental Sci. 98: 309.Google Scholar
  48. Pollin, W., Cardon, P. V., and Kety, S. S., 1961, Effects of amino acid feeding in schizophrenic patients treated with iproniazid, Science 133: 104.PubMedCrossRefGoogle Scholar
  49. Price, J., 1969, The metabolites of isovanillic acid in man, with special reference to the formation of 3,4-dimethoxybenzoic acid, Clin. Chim. Acta 25: 31.CrossRefGoogle Scholar
  50. Schweitzer, J. W., and Friedhoff, A. J., 1966, The metabolism of a-C-3,4dimethoxyphenethylamine, Biochem. Pharmacol. 15: 2097.PubMedCrossRefGoogle Scholar
  51. Schweitzer, J. W., Stone, E. A., and Friedhoff, A. J., 1973, Increased in vitro O-methylation in swim-stressed rats, Presented at the 4th meeting of the International Society for Neurochemistry, Tokyo.Google Scholar
  52. Shulgin, A. T., Sargent, T., and Naranjo, C., 1969, Structure-activity relationships of one-ring psychotomimetics, Nature 221: 537.PubMedCrossRefGoogle Scholar
  53. Smythe, G. A., and Lazarus, L., 1973, Blockade of the dopamine-inhibitory control of prolactin secretion in rats by 3,4-dimethoxyphenylethylamine (3,4-di-O-methyldopamine), Endocrinology 93: 147.PubMedCrossRefGoogle Scholar
  54. Snyder, S. H., and Merril, C. R., 1965, A relationship between the hallucinogenic activity of drugs and their electronic configuration, Proc. Natl. Acad. Sci. (U.S.) 54: 258.CrossRefGoogle Scholar
  55. Takeo, Y., and Himwich, H. E., 1965, Mescaline, 3,4-dimethoxyphenylethylamine, and adrenaline: sites of electroencephalographic arousal, Science 150: 1309.PubMedCrossRefGoogle Scholar
  56. Vacca, L., Fujimori, M., Davis, S. H., and Marrazzi, A. S., 1968, Cerebral synaptic transmission and behavioral effects of dimethoxyphenylethylamine: a potential psychotogen, Science 160: 95.PubMedCrossRefGoogle Scholar
  57. Van Praag, H. M., 1967, The possible significance of cerebral dopamine for neurology and psychiatry, Psychiat. Neurol. Neurochir. 70: 361.PubMedGoogle Scholar
  58. Weil-Malherbe, H., and Szara, S. I., 1971, The Biochemistry of Functional and Experimental Psychoses, Charles C. Thomas, Springfield.Google Scholar
  59. Wyatt, R. J., Termini, B. A., and Davis, J., 1971, Biochemical and sleep studies of schizophrenia: a reveiw of the literature-1960–1970. Part I. Biochemical studies, Schizophrenia Bull. 4: 10.Google Scholar
  60. Youdim, M. B. H., Collins, C. G. S., and Sandler, M., 1969, Multiple forms of rat brain monoamine oxidase, Nature 223: 626.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Arnold J. Friedhoff
    • 1
  • Jack W. Schweitzer
    • 1
  1. 1.Millhauser Laboratories of the Department of PsychiatryNew York University Medical CenterNew YorkUSA

Personalised recommendations