Skip to main content

Charged Fraction of 5 keV to 150 keV Hydrogen Atoms after Emergence from Different Metal Surfaces

  • Chapter
Atomic Collisions in Solids

Abstract

The charged fraction of hydrogen atoms backseattered from Be, V, Cu, Nb, Mo and Ta surfaces has been measured for energies between 5 keV and 150 keV and a wide range of angles of emergency. Hydrogen particles with energies above 20 keV are counted and energy analysed by a surface barrier detector. Charged particles are separated from the neutrals by means of electrical deflection plates between target and detector. Neutrals with energies below 20 keV are partly ionized in a calibrated gas stripping cell. They are energy analysed in a subsequent electrostatic spectrometer and counted by a channeltron multiplier. The backscattered ions were recorded with no gas in the stripping cell. Only small differences are found for the charged fraction for different materials as long as the surface is covered by a layer of adsorbed impurities. There is, however, for most materials a change in the charged fraction due to annealing the target. For emergence energies above ~ 40 keV it is lower than for unannealed targets. An observed dependence of the charged fraction on the angle of emergence was generally just slightly above the experimental error.

The measured results are compared with theoretical curves of Zaidins, Trubnikov et al., and Brandt and Sizmann. The best agreement is found with values given by Zaidins. The peculiarities observed at annealed surfaces are not predicted by theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).

    Article  ADS  Google Scholar 

  2. K. H. Berkner, I. Bornstein, R. V. Pyle, J. W. Stearns, Phys. Rev. A 6, 278 (1972).

    Article  ADS  Google Scholar 

  3. T. M. Buck, G. H. Wheatley, L. C. Feldman, Surf. Sci. 15, 345 (1973).

    Article  Google Scholar 

  4. See: Nucl. Instr. Meth. 110, 1–522 (1973).

    Google Scholar 

  5. E. S. Mashkova and V. A. Molchanov, Rad. Eff. 16, 143–187 (1972).

    Article  Google Scholar 

  6. W. Brandt and R. Sizmann, Phys. Lett. 37A, 115 (1971).

    ADS  Google Scholar 

  7. C. Rau and R. Sizmann, Phys. Lett. 43A, 317 (1973).

    ADS  Google Scholar 

  8. R. Behrisch, W. Heiland, 6th Symp. on Fusion Technology, Aachen, 1970.

    Google Scholar 

  9. T. Hall, Phys. Rev. 79, 504 (1950).

    Article  ADS  Google Scholar 

  10. C. S. Zaidins, Ph. D. Thesis, Appendix 1, California Institute of Technology 1967;

    Google Scholar 

  11. see also: J. B. Marion and F. C. Young, Nucl. Radiation Analysis, North Holland 1968, p. 36.

    Google Scholar 

  12. M. E. Ebel, Phys. Rev. Lett. 24, 1395 (1970).

    Article  ADS  Google Scholar 

  13. N. V. Federenko, Sov. Phys. Techn. Phys. 15, 1947 (1971).

    ADS  Google Scholar 

  14. H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973).

    Article  ADS  Google Scholar 

  15. B. A. Trubnikov and Yu. N. Yavlinski, Sov. Phys. JETP 25 1089 (1967).

    ADS  Google Scholar 

  16. Yu. N. Yavlinski, B. A. Trubnikov, V. F. Elesin, Bull. Acad. Sci., USSR Phys. Sov. 30, 1996 (1968).

    Google Scholar 

  17. J. A. Phillips, Phys. Rev. 97, 404 (1955).

    Article  ADS  Google Scholar 

  18. S. Rubin, Nucl. Instr. Meth. 5, 177 (1959).

    Article  Google Scholar 

  19. E. Bøgh, Can. J. Phys. 46, 653 (1968).

    Article  ADS  Google Scholar 

  20. R. Behrisch, Thesis, Techn. Univ. of Munich (1968)

    Google Scholar 

  21. W. Eckstein and H. Verbeek, IPP Report 9/7, 1972 and Vacuum 23, 159 (1973).

    Google Scholar 

  22. R. Behrisch, Vak. Techn. 10, 250 (1967).

    Google Scholar 

  23. A. Egidi, R. Marconero, G. Pizella, Rev. Sci. Instr. 40, 88 (1969).

    Article  ADS  Google Scholar 

  24. H. Schmidl, IPP Report 9/3 (1971).

    Google Scholar 

  25. B. M. U. Scherzer, Thesis, Techn. Univ. of Munich (1969).

    Google Scholar 

  26. See for example: M. A. Nicolet, J. W. Mayer, I. V. Mitchell, Science 177, 481 (1972).

    Article  Google Scholar 

  27. R. Behrisch, B. M. U. Scherzer, H. Schulze, Rad. Eff. 13, 33 (1972).

    Article  Google Scholar 

  28. K. O. Groeneveld and M. Kaminsky, Bull. Am. Phys. Soc. 14, 1246 (1969) and private communication.

    Google Scholar 

  29. R. Sizmann, private communication.

    Google Scholar 

  30. H. Schäffler, Thesis, Technical University of Munich (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behrisch, R., Eckstein, W., Meischner, P., Scherzer, B.M.U., Verbeek, H. (1975). Charged Fraction of 5 keV to 150 keV Hydrogen Atoms after Emergence from Different Metal Surfaces. In: Datz, S., Appleton, B.R., Moak, C.D. (eds) Atomic Collisions in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3117-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3117-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3119-3

  • Online ISBN: 978-1-4684-3117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics