Skip to main content

Prospects for Obtaining Metallic Hydrogen with Spherical Presses

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 18))

  • 343 Accesses

Abstract

Estimates for the pressure required to produce metallic hydrogen from the normal molecular state vary from a minimum of 0.25 Mbar [1] to well over 20 Mbar [2]. A pressure in the range 0.75 to 2 Mbar [3–5] is currently accepted. Although this is within the range of pressures produced with transient pressure techniques, the corresponding temperature rise is high (see Fig. 1). Even with the relatively slow magnetic implosion technique of Hawke [6], temperatures in excess of 2000 K are probably reached in compressing molecular hydrogen to 1 Mbar. Such a technique would probably produce liquid metallic hydrogen, particularly since the melting temperature may be estimated from the Lindemann melting formula to be approximately 1000 K. (This calculation assumes that the Lindemann constant for metallic hydrogen is the same as that for Li and Na.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys., 3: 764 (1935).

    Article  Google Scholar 

  2. B. J. Alder, in: Progress in Very High Pressure Research(F. P. Bundy, W. R. Hibbard, and H. M. Strong, ed.), John Wiley and Sons, New York (1961), p. 152.

    Google Scholar 

  3. G. A. Neece, F. J. Rogers, and W. G. Hoover, J. Comp. Phys., 7: 621 (1971).

    Article  Google Scholar 

  4. C. F. Bender, W. G. Hoover, R. J. Olness, F. J. Rogers, and M. Ross, UCRL Rept. 73: 651 (1972).

    Google Scholar 

  5. G. F. Chapline, Jr., UCRL Rept. 73413, (April 1972), to be published in Phys. Rev.

    Google Scholar 

  6. R. S. Hawke, UCRL Repts. 77316 and 73483 (1971).

    Google Scholar 

  7. F. P. Bundy, in: Modern Very High Pressure Techniques(R. H. Wentorf, Jr., ed.), Butterworths, London (1962), p. 1.

    Google Scholar 

  8. J. W. Stewart, in: Physics of High Pressure and the Condensed Phase(A. van Itterbeek, ed. ), John Wiley and Sons (1965), p. 189.

    Google Scholar 

  9. N. Kawai, Proc. Japan. Academy, 42: 385 (1966).

    Google Scholar 

  10. N. Kawai, in: Accurate Characterization of the High-Pressure Environment (E. C. Lloyd, ed.), NBS Special Publication 326 (March 1971), p. 45.

    Google Scholar 

  11. N. Kawai and S. Endo, Rev. Sci. Instr., 41: 1178 (1970).

    Article  Google Scholar 

  12. B. von Platen, in: Modern Very High Pressure Techniques(R. H. Wentorf, Jr., ed.), Butterworths, London (1962), p. 118.

    Google Scholar 

  13. N. Kawai and S. Mochizuki, Solid State Comm., 9: 1393 (1971).

    Article  Google Scholar 

  14. N. Kawai, S. Mochizuki, and H. Fujita, Phys. Leu., 34A: 107 (1971).

    Article  Google Scholar 

  15. N. Kawai and S. Mochizuki, Phys. Leu., 36A: 54 (1971).

    Article  Google Scholar 

  16. H. G. Drickamer and A. S. Balchan, in: Modern Very High Pressure Techniques(R. H. Wentorf, Jr., ed.), Butterworths, London (1962), p. 25.

    Google Scholar 

  17. L. F. Vereschagin, E. N. Yakovlev, T. D. Vartolomeeva, V. N. Sleslarov, and L. E. Stevenberg, Dokl. Akad. Nauk SSSR, 185:555 (1969);

    Google Scholar 

  18. L. F. Vereschagin, E. N. Yakovlev, T. D. Vartolomeeva, V. N. Sleslarov, and L. E. Stevenberg, English Transi. Soy. Phys.-Doklady, 14: 248 (1969).

    Google Scholar 

  19. L. F. Vereschagin, E. N. Yakovlev, T. D. Vartolomeeva, V. N. Sleslarov, and L. E. Stevenberg, High Temp., High Press., 3: 239 (1971).

    Google Scholar 

  20. H. T. Hall, Science, 169: 869 (1970).

    Article  Google Scholar 

  21. T. Asada, Asada Fundamental Res. Lab., Kobe Steel Ltd., private communication (1972).

    Google Scholar 

  22. D. L. Dekker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, “High Pressure Calibration-A Critical Review”, High Pressure Data Center, Brigham Young University, Provo, Utah, October (1968).

    Google Scholar 

  23. H. T. Hall, in: Accurate Characterization of the High-Pressure Environment (E. C. Lloyd, ed.), NBS Special Publication 326 (March 1971), p. 303.

    Google Scholar 

  24. H. G. Drickamer, Rev. Sci. Instr. (Notes), 41: 1667 (1970).

    Article  Google Scholar 

  25. H. Katzman, J. Moss, and W. F. Libby, J. Phys. Chem. Solids, 32: 2786 (1971).

    Article  Google Scholar 

  26. E. E. Salpeter, Phys. Rev. Letters, 28(9): 560 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Science+Business Media New York

About this paper

Cite this paper

Spain, I.L., Ishizaki, K., Marchello, J.M., Paauwe, J. (1973). Prospects for Obtaining Metallic Hydrogen with Spherical Presses. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3111-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3111-7_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3113-1

  • Online ISBN: 978-1-4684-3111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics