Skip to main content

The Chemical Coding Via the Cholinergic System: Its Organization and Behavioral Implications

  • Chapter
Neurohumoral Coding of Brain Function

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 10))

  • 52 Accesses

Abstract

The central cholinergic synapses which constitute the subject of this paper are those at which the transmission between the presynaptic and the postsynaptic neuron — or, more precisely, between the presynaptic nerve terminal and the postsynaptic membrane — is mediated by acetylcholine (ACh); a complication may arise from the fact that at certain, non-cholinergic synapses ACh may play a modulatory, facilitatory rather than transmissive role. In view of the wide occurrence (cf. below) of the cholinergic synapses or modulations, the cholinergic system must participate significantly in brain functions and behavioral processes* In fact, several participants of this Symposium discussed the cholinergic participation in the appetitive and thermal control (R.D. Myers), in conditioning and learning (H. Brust-Carmona), in aggression (D.J. Reis), and in certain phases of sleep (P. Morgane); related aspects of the cholinergic system were described by others (Domino, 1968; Domino et al., 1968; Bovet-Nitti, 1965; Aprison, 1965; Stein, 1968; Karczmar et al., 1972; Karczmar, 1971).

The published and unpublished results from our laboratories described in this newspaper were supported in part by the USA-NIH and USA-NIH Training Grant GM77.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P. and Andersson, S.A., 1968,“Physiological Basis of Alpha Rhythm,” Appleton-Century-Crafts, New York.

    Google Scholar 

  • Anderson, P. and Curtis, D.R., 1964, The excitation of thalamic neuronesby acetylcholine, Acta Physiol. Scand 61: 85–99.

    Article  Google Scholar 

  • Aprison, M.H., 1965, Research approaches to problems in mental illness: Brain neurohumor-enzyme systems, and behavior, in “Progress in Brain Research,” (W.A. Hirawich and J.E. Schade eds), pp. 48–80, 16.

    Google Scholar 

  • Babb, T.L., Babb, M., Mahnke, J.H. and Verzeano, M., 1971, The action of cholinergic agents on the electrical activity of the non-specific nuclei of the thalamus, Int. J. Neurol. 8: 198–210.

    PubMed  CAS  Google Scholar 

  • Barker, J.L. and Nicoll, R.A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. 228: 259–277.

    PubMed  CAS  Google Scholar 

  • Barnes, L., Cann, F., Karczraar, A0G. and Longo, V.G., 1973a, 5-HTP and DOPA responses in 6-OH dopamine and 5,6-dihydrotryptamine treated mice, Fed. Proc. 32: 276.

    Google Scholar 

  • Barnes, L., Cann, F., Karczmar, A.G., Kindel, G. and Longo, V.G., 1973b, Effects of L-DOPA on behavior and on brain amines in mice trated with 6-hydroxydopamine, Pharmacol, and Behav. 1: 35–40.

    Article  CAS  Google Scholar 

  • Bovet-Nitti, F., 1965, Action of nicotine on conditioned behavior in naive and pretrained rats. II. Complex forms of acquired behavior, in “Symposium on Tobacco Alkaloids and Related Compounds,” (U.S.V. Euler, ed.), pp. 137–143, Pergamon Press, Oxford.

    Google Scholar 

  • Burn, J.H., 1966, Introductory remarks. Section V. Adrenergic transmission, Pharmac. Rev. 18: 459–470.

    CAS  Google Scholar 

  • Campbell, G., 1970, Autonomic nervous supply to effector cells, in “Smooth Musele,” (E. Btilbring, A.F. Brading, A.W. Jones and T. Tomita, eds.), pp. 451–495, The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Christ, D.D. and Nishi, S., 1971, Site of adrenalin blockade in the superior cervical ganglion of the rabbit, J. Physiol. 213: 107–117.

    PubMed  CAS  Google Scholar 

  • Cosgrove, K.A., Scudder, C.L. and Karczmar, A.G., 1973, Some aspects of acute quantitative shock on mouse whole brain levels of acetylcholine and choline, The Pharmacologist, 15: 255.

    Google Scholar 

  • Curtis, D.R. and Crawford, J.M., 1969, Central synaptic transmission microelectrophoretic studies, Ann. Rev. Pharmacol. 9: 209–250.

    Article  PubMed  CAS  Google Scholar 

  • Domino, E.F., 1968, Cholinergic mechanisms and the EEG, EEG Clin. Neurophysiol. 24: 292–293.

    CAS  Google Scholar 

  • Domino, E.F., Yamamoto, K. and Dren, A.T., 1968, Role of cholinergic mechanisms in states of wakefulness and sleep, Brain Res. 28: 113–133.

    Article  CAS  Google Scholar 

  • Eccles, R.M., 1955, Intracellular potentials recorded from a mammalian sympathetic ganglion, J. Physiol. 130: 572–584.

    PubMed  CAS  Google Scholar 

  • Eccles, J.C., 1969, Historical Introduction, in “Central Cholinergic Transmission and its Behavioral Aspects,” (A.G. Karczmar, ed.), pp. 90–94, Fed. Proc. 28.

    Google Scholar 

  • Eccles, J.C., 1969, “The Inhibitory Pathways of the Central Nervous System,” Charles C. Thomas (Publ.), Springfield, Illinois.

    Google Scholar 

  • Eccles, J.C., Fatt, P. and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor axon collaterals to motoneurons, J. Physiol. (Lond.), 216: 524–562.

    Google Scholar 

  • Eccles, J.C., Schmidt, R.F. and Willis, W.D., 1963, Pharmacological studies of synaptic inhibition, J. Physiol. 168: 500–530.

    PubMed  CAS  Google Scholar 

  • Essman, W.B., 1972, Neurochemical changes in ECS and ECT, Seminars in Psychiat. 4: 67–79.

    CAS  Google Scholar 

  • Gastaut, H. and Fischer-Williams, M., 1959, The physiopathology of epileptic seizures, in “Handbook of Physiology, Section I: Neurophysiology,” (J. Field, ed.), pp. 329–363, American Physiol, Soc., Washington, D.C.

    Google Scholar 

  • George, R., Haslett, W.L. and Jenden, D.J., 1964, A cholinergic mechanism in the brain stem reticular formation: induction of paradoxical sleep, Internatl. J. NeuroPharmacol. 3: 541–552.

    CAS  Google Scholar 

  • Glisson, S.N. and Karczmar, A.G., 1971, Atropine methyl nitrate block of diisopropyl fluorophosphate effect on dopamine in rabbit brain, Fed. Proc. 30: 382.

    Google Scholar 

  • Glisson, S.N., Karczmar, A.G. and Barnes, L., 1972, Cholinergic effects on adrenergic transmitters in rabbit brain parts, Neuropharma col. 11: 465–477.

    Article  CAS  Google Scholar 

  • Hanigan, W. and Scudder, C.L., 1973, A systems view of seizure patterning, Gen. Syst. Bull. 4: 3–13.

    Google Scholar 

  • Hanin, I., Massarelli, R. and Costa, E., 1972, An approach to the study of the biochemical pharmacology of cholinergic function, in “Studies of Neurotransmitters at the Synaptic Level,” E. Costa, L.L. Iversen and R. Paoletti, eds.), pp. 181–202, Adv. Biochem. Psychopharmacol. 6.

    Google Scholar 

  • Hernandez-Peon, R., 1965, Central neurohumoral transmission in sleep and wakefulness, in “Progress in Brain Research, Sleep Mechanisms,” ( K. Akert, C. Bally and J.P. Schade, eds.), pp. 96–116, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Hernandez-Peon, R. and Chavez Ibarra, G., 1963, Sleep induced by electrical or chemical stimulation of the forebrain, Electroenceph. Clin. Neurophysiol. Suppl. 24: 188–198.

    Google Scholar 

  • Himwich, H.E., 1962, Reticular activating system — current concepts of function, Chapter 28, in “Psychosomatic Medicine,” (J.H. Nodine and J.H. Meyer, eds.),pp. 211–220, Lea and Fabiger, Philadelphia.

    Google Scholar 

  • Hubbard, J.H. and Rayport, M., 1968, Cholinergic induction of thalamo-cortical seizures in cats, EEG Clin. Neurophysiol. 24: 189.

    Google Scholar 

  • Iwata, N., Sakai, Y. and Deguchi, T., 1971, Effects of physostigmine on the inhibition of trigeminal motoneurons by cutaneous impulses in the cat, Exp. Brain Res. 13: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Jouvet, M., 1972, Some monoaminergic mechanisms controlling sleep and waking, in “Brain and Human Behavior,” (A.G. Karczmar and J.C. Eccles, eds.), pp. 131–160, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kaplan, R.L. and Scudder, C.L., 1973, The effect of unavoidable footshock stress on-γ-aminobutyric acid levels in mouse brain, The Pharmacologist. 15: 259.

    Google Scholar 

  • Karczmar, A.G., 1967, Pharmacologic, toxicologic and therapeutic properties of anticholinesterase agents, in “Physiological Pharmacology,” (W.S. Root and F.G. Hofman, eds.), pp. 163–322, Vol. 3, Academic Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1969, Is the central cholinergic system overexploited? in “Central Cholinergic Transmission and its Behavioral Aspects,” (A.G. Karczmar, ed.), Fed. Proc. 28: 47–157.

    Google Scholar 

  • Karczmar, A.G., 1970, Central cholinergic pathways and their be-havioral implications, in “Principles of Psychopharmacology,” (W.G. Clark and J. del Giudice, eds.), pp. 57–86, Academic Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1971, Possible mechanisms underlying the so-called “Divorce” phenomena of EEG desynchronizing actions of anti-cholinesterases, Presented at the Regional Midwest EEG Meetings, April 1971, Hines V.A. Hospital.

    Google Scholar 

  • Karczmar, A.G., 1971, Neurophysiologies1 behavioral and neurochemical correlates of the central cholinergic synapses, in “Advances in Neuropsychopharmacology,” ( O. Vinar, Z. Votava and P.B. Bradley, eds.), pp. 455–480, North-Holland Pubi. Co., Amsterdam.

    Google Scholar 

  • Karczmar, A.G., 1973, Brain acetylcholine and seizures, in “Psychobiology of Electroconvulsive Therapy,” (M. Fink, ed.), Winston and Sons, Publ., New York (in Press).

    Google Scholar 

  • Karczmar, A.G. and Koppanyi, T., 1953, Central effects of diisopropyl fluorophosphonate in urodele larvae, Schmiedebergs Arch. J. expt. Path. 219: 261–270.

    Google Scholar 

  • Karczmar, A.G. and Nishi, S., 1971, The types and sites of cholinergic receptors: in “Advances in Cytopharmacology,” (F. Clementi and B. Ceccarelli, eds.), 1: 301–318, Raven Press, New York.

    Google Scholar 

  • Karczmar, A.G., Longo, V.G. and Scotti de Carolis, A., 1970, A pharmacological model of paradoxical sleep: the role of cholinergic and monoamine systems, Physiology and Behavior 5: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Karczmar, A.G., Nishi, S. and Blaber, L.C., 1970, Investigations, particularly by means of the anticholinesterase agents, of the multiple peripheral and central cholinergic mechanisms and of their behavioral implications, Acta Vitaminologica et Enzymologica 24: 131–189.

    PubMed  CAS  Google Scholar 

  • Karczmar, A.G., Nishi, S. and Blaber, L.C., 1972, Synaptic modulations, in “Brain and Humpn Behavior,” (A.G. Karczmar and J.C. Eccles, eds.), pp. 63–92, Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Karczmar, AG., Scudder, C.L. and Richardson, D., 1973, Interdisciplinary approach to the study of behavior in related mice types, in “Neurosciences Research,” (I. Kopin, ed.), 5: 159–244, Academic Press, New York,

    Google Scholar 

  • Kidokoro, Y., Kubota, K., Shuto, S. and Sumino, R., 1968, Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from inferior dental nerve, J. Neurophysiol, 31: 709–716o

    PubMed  CAS  Google Scholar 

  • Kiraly, M.K. and Phillis, J.W., 1961, Action of some drugs on the dorsal root potentials of the isolated toad spinal cord, Brit. J. Pharmacol. 17: 224–231.

    PubMed  CAS  Google Scholar 

  • Koelle, G.B., 1963, Cytological distribution and physiological functions of cholinesterases, in “Cholinesterases and Anticholinesterase Agents, ”(GOB. Koelle, ed.), Handbch. d. Exper. Pharmakol., Ergzungswk., 15: 187–298, Springer-Verlag, Berlin.

    Google Scholar 

  • Koelle, G.B., 1969, Significance of acetylcholinesterase in central synaptic transmission, in “Symposium on Central Cholinergic Transmission and its Behavioral Aspects,” (A.G. Karczmar, ed.), Fed. Proc., 28: 147–157.

    Google Scholar 

  • Koelle, G.B., 1969b, Pharmacology of synaptic transmission, in “Basic Mechanisms of the Epilepsies,” (H.H. Jasper, A.A. Ward, Jr., and A. Pope, eds. ), pp. 195–211.

    Google Scholar 

  • Koketsu, K., 1969, Cholinergic synaptic potentials and the underlying ionic mechanisms, In “Central Cholinergic Transmission and its Behavioral Aspects,” (A.G. Karczmar, ed.), Fed. Proc., 28: 101–112.

    Google Scholar 

  • Koketsu, K., Karczmar, A.G. and Kitamura, R., 1969, Acetylcholine depolarization of the dorsal root nerve terminals in the amphibian spinal cord, Int. J. Neuro-Pharmacol., 8: 329–336.

    CAS  Google Scholar 

  • Kottegoda, S.R., 1970, Peristalsis of the small intestine, in “Smooth Muscle,” (E. Mibring, A.F. Brading, A.W. Jones and T. Tomita, eds.), pp. 525–541, The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Krnjevic, K., 1969, Central cholinergic pathways, in “Central Cholinergic Transmission and its Behavioral Aspects,” (A.G. Karczmar, ed.), Fed. Proc., 28: 113–120.

    Google Scholar 

  • Krnjevic, K., 1970, Dopamine, acetylcholine and excitatory amino acids in nigrostriatal transmission, in “L-DOPA and Parkinsonism,” (A. Barbeau and F.H. McDowell, eds.), pp. 189–190, F.A. Davis Co., Philadelphia.

    Google Scholar 

  • Krnjevic K. and Schwartz, S., 1967, The action of i-aminobutyric acid on cortical neurones, Exptl. Brain Res. 3: 320–336.

    Article  CAS  Google Scholar 

  • Krnjevic, K., Purnain, R. and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215: 247–268.

    PubMed  CAS  Google Scholar 

  • Lewis, P.R. and Shute, C.C.D., 1966, The distribution of cholinesterase in cholinergic neurons demonstrated with electrone microscope, J. Cell Science, 1: 381–390.

    PubMed  CAS  Google Scholar 

  • Libet, B. and Kobayashi, H., 1969, Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells, Science, 164: 1530–1532.

    Article  PubMed  CAS  Google Scholar 

  • Lomax, P., 1969, Drugs and body temperature, Int. Rev. Neurobiol. 12: 1–43.

    Article  Google Scholar 

  • Lomax, P., Foster, R.S. and Kirkpatrick, W.E.,1969, Cholinergic and adrenergic interaction in the flermoregulatory centers of the rat, Brain Res, 15: 431–438.

    Google Scholar 

  • Longo, V.G., 1962, Electroencephalographic atlas for pharmacological research, Elsevier Publ. Co., Amsterdam.

    Google Scholar 

  • Longo, V.G. and Silvestrini, G., 1957, Action of eserine and amphetamine on the electrical activity of rabbit brain, J. Pharmacol. Exptl. Therap. 120: 160–170.

    CAS  Google Scholar 

  • Machne, X. and Unna, K.R.W., 1963, Actions of the central nervous system, in “Cholinesterases and Anticholinesterase Agents,” (G.B. Koelle, ed.), Hndbch, d. exper. Pharmakol. Erganzungswk., 15: 679–700, Springer-Verlag, Berlin.

    Google Scholar 

  • Marczynski, T.J., 1967, Topical application of drugs to subcortical brain structures and related aspects of electrical stimulation Ergebn. d. Physiol. Biol, Chem. Exp, Pharmakol, 59: 86–159.

    CAS  Google Scholar 

  • Martin, W,R. and Eades, C.G,, 1967, Pharmacological studies of spinal cord adrenergic and cholinergic mechanisms and their relation to physical dependence on morphine, Psychopharmacologia 11: 195–223,

    Article  PubMed  CAS  Google Scholar 

  • Morrell, F., 1967, Electrical signs of sensory coding, in “The Neurosciences,” (JVC, Quarton, T, Melnechuk and F.O. Schmitt, eds.), pp. 452–468, The Rockefeller Press, New York.

    Google Scholar 

  • Nishi, S., 1970, Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals, Fed. Proc. 29: 1457–1465,

    Google Scholar 

  • Nishi, S., Minota, S, and Karczmar, A.G., 1973b, The GABA-mediated depolarization of Primary afferent neurons, The Physiologist, (in Press).

    Google Scholar 

  • Nishi, S., Minota, S. and Karczmar, A.G., 1973c, Primary afferent neurons: The ionic mechanism of GABA-mediate depolarization, Science (in Press).

    Google Scholar 

  • Phillis, J.W., 1971, The pharmacology of thalamic and geniculate neurons, Int. Rev. Neurobiol. 14: 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Pradhan, S.N. and Dutta, S.N., 1971, Central cholinergic mechanism and behavior, Int. Rev. Neurobiol. 14: 173–231.

    Article  PubMed  CAS  Google Scholar 

  • Reid, W., Haubrich, D. and Krishna, G., 1971, Enzymatic radioassay for estimating brain levels of acetylcholine and choline, Anal, Biochem. 42: 392–396.

    Article  Google Scholar 

  • Richardson, D., Karczmar, A.G., and C,L. Scudder, 1972, Behavioral neurochemical correlates of stress, Proc. Fifth Int, Cong. Pharmacol., p. 192.

    Google Scholar 

  • Rinaldi, F. and Himwich, H., 1955, Cholinergic mechanisms involved in function of mesodiencephalic activating system, Arch. Neurol. Psychiat. 73: 396–402.

    CAS  Google Scholar 

  • Scudder, C.L., 1971, The brain: A neurohumorally regulated ultra-homeostat. Gen. Syst. Bull. 3: 2–11.

    Google Scholar 

  • Scudder, C.L., Karczmar, A.G., Everett, G.M., Gibson, E. and Rifkin, M., 1966, Brain catechol and serotonin levels in various strains and genera of mice and a possible interpretation for the correlations of amine levels with electroshock latency and behavior, Int. J. Neuropbarmacol., 5: 343–351.

    Article  CAS  Google Scholar 

  • Sethy, V.H. and Van Woert, M.H., 1973, Effect of L-DOPA on brain acetylcholine and choline in rats, Neuropharmacolo 12: 27–31.

    Article  CAS  Google Scholar 

  • Stein, L., 1968, Chemistry of reward and punishment, in “Psychopharmacology. A Review of Progress 1957 to 1967,” (D.H. Efron, ed.), pp. 105–124, U.S. Govt, Printing Office, PHS Publ. No. 836, Washington, D.C.

    Google Scholar 

  • Tebécis, A.K., 1970a, Properties of cholinoceptive neurons in the medial geniculate nucleus, Brit. J. Pharmacol. 38: 117–137.

    Google Scholar 

  • Tebecis, A.K., 1970b, Studies on cholinergic transmission in the medial geniculate nucleus, Brit. J. Pharmacol. 38: 138–147.

    CAS  Google Scholar 

  • Toman, J., 1963, Some aspects of central nervous pharmacology, Ann. Rev. Pharmacol. 3: 153–184.

    Article  Google Scholar 

  • Van Meter, W., 1970, “Responses to anticholinesterases,” Ph.D. Thesis, Loyola University, Chicago, Illinois.

    Google Scholar 

  • Van Meter, W. and Karczmar, A.G., 1967, Effects of catecholamine depletion on anticholinesterase activity in the central nervous system, Fed. Proc. 26: 651.

    Google Scholar 

  • Van Meter, W.G. and Karczmar, A.G., 1971, An effect of physostigmine on the central nervous system of rabbits, related to brain levels of norepinephrine, Neuropharmacol. 10: 379–390.

    Article  Google Scholar 

  • Varagic, V. and Kristic, M., 1966, Adrenergic activation by anti-cholinesterases, Pharmac. Rev. 18: 796–800.

    Google Scholar 

  • Vazquez, A.J. and Krip, G., 1973, Evidence for an inhibitory role for acetylcholine, catecholamines, and serotonin on the cerebral cortex, in “Chemical Modulation of Brain Function — A Tribute to J.E.P. Toman,” (U.C. Sabelli, ed.), pp. 137–159, Raven Press, Pubis., New York.

    Google Scholar 

  • Wikler, A., 1952, Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: Morphine, n-allyl normorphine and atropine, Proc. Soc. Exptl. Biol. Med. 79: 261–265.

    CAS  Google Scholar 

  • York, D.H., 1967, The inhibitory action of dopamine on the neurons of the caudate nucleus, Brain Res. 5: 263–266.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Karczmar, A.G. (1974). The Chemical Coding Via the Cholinergic System: Its Organization and Behavioral Implications. In: Myers, R.D., Drucker-Colín, R.R. (eds) Neurohumoral Coding of Brain Function. Advances in Behavioral Biology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3066-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3066-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3068-4

  • Online ISBN: 978-1-4684-3066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics