Skip to main content

Detoxication of Pesticides by Biota

  • Chapter

Part of the book series: Environmental Science Research ((ESRH,volume 6))

Abstract

A pesticidal chemical, once released into the environment, is subject to physiochemical and biochemical processes which determine its fate and efficacy. The latter transformations involve biota and encompass biodegradation, detoxication, or, simply, metabolism. The metabolism of pesticides by living organisms has been the subject of various symposia (Institute fur Okologische Chemie, 1970; National Academy of Science, 1972; Khan and Hauge, 1970; Hodgson, 1969; Gillette et al., 1969; Matsumura et al., 1972; O’Brien and Yamamoto, 1970; American Chemical Society, 1973; Khan and Bederka, 1974). This article will present an overview of the knowledge of detoxication of pesticides by biota: microorganisms, plants, and animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, R.H. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, New York, 550 pp.

    Google Scholar 

  • Ahmed, M.K., and J.E. Casida. 1958. Metabolism of some organophos-phorus insecticides by microorganisms. J. Econ. Entomol. 51: 59.

    CAS  Google Scholar 

  • Alexander, M. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, New York, 637 pp.

    Google Scholar 

  • Allan, J. 1955. Loss of biological efficiency of cattle-dipping wash containing benzene hexachloride. Nature 175: 1131.

    Article  PubMed  CAS  Google Scholar 

  • American Chemical Society. 1973. Significance of Pesticide Metabolites. A Symposium. 166th National Meeting, Chicago, Illinois.

    Google Scholar 

  • Andrews, N.R., H.W. Dorough, and D.A. Lindquist. 1967. Degradation and elimination of Temik in rats. J. Econ. Entomol. 60: 979.

    Google Scholar 

  • Beneset, H., and F. Matsumura. Unpublished data.

    Google Scholar 

  • Blinn, R.C. 1968. Abate insecticide: the fate of 0,0,0’,0’-tetramethyl 0,0’-thiodi-p-phenylene phosphorothioate on bean leaves. J. Agr. Food Chem. 16: 441.

    Article  CAS  Google Scholar 

  • Bollag, J.M., and S.Y. Liu. 1971. Degradation of Sevin by soil microorganisms. Soil Biol. Biochem. 3: 337.

    Article  CAS  Google Scholar 

  • Boush, G.M., and J.C. Batterton. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, New York, 637 pp.

    Google Scholar 

  • Boush, G.M., and F. Matsumura. 1967. Insecticidal degradation by pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60: 918.

    CAS  Google Scholar 

  • Bowman, M.C., M. Beroza, and J.A. Harding. 1969. Determination of phorate and five of its metabolites in corn. J. Agr. Food Chem. 17: 138.

    Article  CAS  Google Scholar 

  • Brooks, G.T. 1968. Symposium on the Science and Technology of Residual Insecticides in Food Production With Special Reference to Aldrin and Dieldrin. Shell Oil Company, USA, 244 pp.

    Google Scholar 

  • Brooks, G.T. 1969. The metabolism of diene-organochlorine (cyclodiene) insecticides. Residue Reviews 27: 81.

    CAS  Google Scholar 

  • Brooks, G.T., A. Harrison, and S.E. Lewis. 1970. Cyclodiene epoxide ring hydration by microsomes from mammalian liver and houseflies. Biochem. Pharmacol. 19: 255.

    Article  Google Scholar 

  • Brown, A.W.A. 1971. Pesticides in the Environment. L. White-Stevens, editor. Marcel Dekker, p. 457.

    Google Scholar 

  • Buhler, D.R., and M.E. Rasmusson. 1968. Reduction of p-nitrobenzoic acid by fishes. Arch. Biochem. Biophys. 124: 582.

    Article  PubMed  CAS  Google Scholar 

  • Bull, D.L., and P.L. Adkinson. 1963. Absorption and metabolism of C14-labeled DDT by DDT-susceptible and DDT-resistant pink bollworm adults. J. Econ. Entomol. 56: 641.

    CAS  Google Scholar 

  • Bull, D.L., and D.A. Lindquist. 1964. Metabolism of 3-hydroxyN,N-dimethyl-crotonamide dimethyl phosphate by cotton plants, insects, and rats. J. Agr. Food Chem. 12: 310.

    Article  CAS  Google Scholar 

  • Bull, D.L. 1965. Metabolism of di-syston by insects, isolated cotton leaves, and rats. J. Econ. Entomol. 58: 249.

    PubMed  CAS  Google Scholar 

  • Burger, K., I.C. MacRae, and M. Alexander. 1962. Decomposition of phenoxyalkyl carboxylic acids. Soil. Sci. Soc. Amer. Proc. 26: 243.

    Article  CAS  Google Scholar 

  • Casida, J.E. 1969. Microsomes and Drug Oxidations. J.R. Gillette, A.H. Conney, G.J. Cosmides, R.W. Estabrook, J.R. Fonts, and G.J. Mannering, editors. Academic Press, 547 pp.

    Google Scholar 

  • Casida, J.E., and L. Lykken. 1969. Metabolism of organic pesticide chemicals in higher plants. Ann. Rev. Plant Physiol. 20: 607.

    Google Scholar 

  • Chakraborty, J., and J.N. Smith. 1967. Enzymic oxidations of some alkylbenzenes in insects and vertebrates. Biochem. J. 102: 498.

    CAS  Google Scholar 

  • Chapman, P.J. 1972. Degradation of Synthetic Organic Molecules in the Biosphere. Nation. Acad. Sci., 347 pp.

    Google Scholar 

  • Clark, A.G., M. Hitchcock, and J.N. Smith. 1966. Metabolism of gammexane in flies, ticks, and locusts. Nature 209: 103.

    Article  PubMed  CAS  Google Scholar 

  • Clayson, D.B., and M.J. Ashton. 1963. The metabolism of 1-naphthylamine and its bearing on the mode of carcinogenesis of the aromatic amines. Acta Unio Intern. Contra. Cancrum 19: 539.

    CAS  Google Scholar 

  • Coppedge, J.R., D.A. Lindquist, D.L. Bull, and H.W. Dorough. 1967. Fate of 2-methyl-2-(methylthio) propionaldehyde 0-(methylcarbamoyl) oxime (Temik) in cotton plants and soil. J. Agr. Food Chem. 15: 902.

    Article  CAS  Google Scholar 

  • Crosby, D.G. 1964. Metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in bean plants. J. Agr. Food Chem. 12: 3.

    Google Scholar 

  • Dailey, R.E., A.K. Klein, E. Brouwer, J.D. Link, and R.C. Braunberg. 1972. Effect of testosterone on metabolism of 14C-photodieldrin in normal, castrated, and oophorectomized rats. J. Agr. Food Chem. 20: 371.

    Article  CAS  Google Scholar 

  • Dorough, H.W. and J.E. Casida. 1964. Nature of certain carbamate metabolites of the insecticide Sevin. J. Agr. Food Chem. 12: 294.

    Article  CAS  Google Scholar 

  • Duxbury, J.M., J.M. Tiedje, M. Alexander, and J.E. Dawson. 1970. 2,4-D metabolism: Enzymatic conversion of chloromaleylactic acid to succinic acid. J. Agr. Food Chem. 18: 199.

    Article  CAS  Google Scholar 

  • Edwards, C.A. 1970. Persistence Pesticides in the Environment. The Chem. Rubber Co. Press, 78 pp.

    Google Scholar 

  • Eldefrawi, M.E., and W.M. Hoskins. 1961. Relation of the rate of penetration and metabolism to the toxicity of Sevin to three insect species. J. Econ. Entomol. 54: 401.

    CAS  Google Scholar 

  • Fang, S.C., and J.S. Butts. 1954. Studies in plant metabolism. III. Absorption, translocation, and metabolism of radioactive 2,4-D in corn and wheat plants. Plant Physiol. 29: 56.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J.K., and D. Woodcock. 1961. Agri. Biol. Chem. J. 70: 373.

    Google Scholar 

  • Faulkner, J.K., and D. Woodcock, 1965. Fungal detoxication. Part VII. Metabolism of 2,4-dichlorophenoxyacetic and 4-chloro-2methylphenoxy-acetic acids by Aspergillus niger. J. Chem. Soc. 1187.

    Google Scholar 

  • Fawcett, C.H., J.M.A. Ingram, and R.L. Wain. 1954. The (3-oxidation of w-phenoxyalkylcarboxylic acids in the flax plant in relation to their plant growth-regulating activity. Proc. Royal Soc. London B142: 60.

    Article  Google Scholar 

  • Feung, C.S., R.H. Hamilton, and F.H. Witham. 1971. Metabolism of 2,4-dichlorophenoxyacetic acid by soybean cotyledon callus tissue cultures. J. Agr. Food Chem. 19: 475.

    Article  Google Scholar 

  • Finley, R.B., and R.E. Pillmore. 1963. Conversion of DDT to DDD in animal tissue. Am. Inst. Biol. Sci. Bull. 13: 41.

    CAS  Google Scholar 

  • Garretto, M., and M.A.Q. Khan. 1974. Mixed-function oxidase in fresh water fish: Bluegill and Kissing Guorami. Paper

    Google Scholar 

  • presented at the 7th annual meeting of Illinois State Acad. Sci. submitted to Comp. Biochem. Physiol.

    Google Scholar 

  • Gillette, J.R., A.H. Conney, G.J. Cosmides, R.W. Estabrook, J.R. Fout, and G.J. Mannering. 1969. Microsomes and Drug Oxidations. Academic Press, New York, 547 pp.

    Google Scholar 

  • Golab, T., R.J. Herberg, S.J. Parka, and J.B. Tepe. 1967. Metabolism of carbon-14 trifluralin in carrots. J. Agr. Food Chem. 15: 638.

    Article  CAS  Google Scholar 

  • Grover, P.L., and P. Sims. 1965. The metabolism of 1–2,3,4,5,6pentachlorocyclohex-1-ene and y-hexachlorocyclohexane in rats. Biochem. J. 96: 521.

    PubMed  CAS  Google Scholar 

  • Guenzi, W.D., and W.E. Beard. 1968. Anaerobic conversion of DDT to DDE and aerobic stability of DDT in soil. Soil Sci. Soc. Amer. Proc. 32: 522.

    Article  CAS  Google Scholar 

  • Gutenmann, W.H., M.A. Loos, M. Alexander, and D.J. Lisk. 1964. Beta oxidation of phenoxyalkanoic acids in soil. Soil Sci. Soc. Amer. Proc. 28: 205.

    Article  CAS  Google Scholar 

  • Hamilton, R.H. 1964. Tolerance of several grass species to 2-chloro-s-triazine herbicides in relation to degradation and content of benzoxazinone derivatives. J. Agr. Food Chem. 12: 14.

    Article  CAS  Google Scholar 

  • Harris, C.R. 1966. Influence of soil type on the activity of insecticides in soil. J. Econ. Entomol. 59: 1221.

    Google Scholar 

  • Harris, C.I., D.D. Kaufman, T.J. Sheets, R.G. Nash, and P.C.

    Google Scholar 

  • Kearney. 1968. Behavior and fate of s-triazines in soils. In Advances in Pest Control. R.L. Metcalf, editor, 8: 1.

    Google Scholar 

  • Harrison, R.B., D.C. Holmes, J. Roburn, and Z.O’G. Tatton. 1967. The fate of some organochlorine pesticides on leaves. J. Sci. Fd. Agric. 18: 10.

    Article  CAS  Google Scholar 

  • Hay, J.R., and K.V. Thimann. 1956. The fate of 2,4-dichlorophenoxyacetic acid in bean seedlings. I. Recovery of 2,4 -dichloro-phenoxyacetic acid and its breakdown in the plant. Plant Physiol. 31: 382.

    Article  PubMed  CAS  Google Scholar 

  • Hegenman, G.W. 1972. Degradation of Synthetic Organic Molecules in the Biosphere. Nation. Acad. Sci. 347 pp.

    Google Scholar 

  • Henneberg, M. 1964. Dinitroisopiopylphenol (DNPP) and dinitrobutylphenol (DNBP) metabolites in rats. Acta Poloniae Pharmacentics 21: 222.

    Google Scholar 

  • Hodgson, E. 1969. Enzymatic Oxidation of Toxicants. North Carolina State University at Raleigh, 228 pp.

    Google Scholar 

  • Institute fur Okologische Chemie. 1970. Metabolism von Pestiziden und Ihr Vehallen unter Umweltbedingungen. Internationale Symposium, Bonn, Germany.

    Google Scholar 

  • Jooste, J., and D.E. Moreland. 1963. Preliminary characterization of some plant carboxylic ester hydrolases. Phytochemistry 2: 263.

    Article  CAS  Google Scholar 

  • Kearney, P.C., and D.D. Kaufman. 1965. Enzyme from soil bacterium hydrolyzes phenylcarbamate herbicides. Science 147: 740.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, P.C., D.D. Kaufman, and M. Alexander. 1967. Soil Biochemistry. A. McLaren and G.H. Peterson, editors. Marcel Dekker.

    Google Scholar 

  • Khan, M.A.Q., and J.P. Bederka, Jr. 1974. Survival in Toxic Environments. Academic Press, 550 pp.

    Google Scholar 

  • Khan, M.A.Q., J.L. Chang, D.J. Sutherland, J.D. Rosen, and A. Kamal. 1970a. House fly microsomal oxidation of some foreign compounds. J. Econ. Entomol. 63: 1807.

    PubMed  CAS  Google Scholar 

  • Khan, M.A.Q., W.F. Coello, A.A. Khan, and H. Pinto. 1972a. Some characteristics of the microsomal mixed-function oxidase in the freshwater crayfish, Cambarus. Life Sci. 11: 405.

    Article  CAS  Google Scholar 

  • Khan, M.A.Q., and W.O. Hauge. 1970. Toxicology, Biodegradation, and Efficacy of Pesticides. Swets and Zeitlinger, 434 pp.

    Google Scholar 

  • Khan, M.A.Q., A. Kamal, R.J. Wolin, and J. Runnels. 1972b. In vivo and in vitro epoxidation of aldrin by aquatic food chain organisms. Bull. Environ. Contam. Toxicol. 8: 219.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.A.Q., J.D. Rosen, and D.J. Sutherland. 1969. Insect metabolism of photoaldrin and photodieldrin. Science 164: 318.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.A.Q., R.H. Stanton, and G. Reddy. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, 550 pp.

    Google Scholar 

  • Khan, M.A.Q., R.H. Stanton, D.J. Sutherland, J.D. Rosen, and N. Maitra. 1973. Toxicity metabolism relationship of the photoisomers of cyclodiene insecticides. Arch. Environ. Contam. Toxicol. 1: 159.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.A.Q., D.J. Sutherland, J.D. Rosen, and W. Carey. 1970b. Effect of sesamex on the toxicity and metabolism of cyclodienes and their photoisomers in the house fly. J. Econ. Entomol. 63: 470.

    PubMed  CAS  Google Scholar 

  • Khan, M.A.Q., and L.C. Terriere. 1968. DDT-dehydrochlorinase activity in house fly strains resistant to various groups of insecticides. J. Econ. Entomol. 61: 732.

    CAS  Google Scholar 

  • Klein, A.K., R.E. Dailey, M.S. Walton, V. Beck, J.D. Link. 1970. Metabolites isolated from urine of rats fed 14C-photodieldrin. J. Agr. Food Chem. 18: 705.

    Google Scholar 

  • Klein, A.K., J.D. Link, N.F. Ives. 1968. Isolation and purification of metabolites found in the urine of male rats fed aldrin and dieldrin. J. Assoc. Off. Anal. Chem. 51: 895.

    Google Scholar 

  • Klein, W., J. Kohli, I. Weisgerber, and F. Korte. 1973. Fate of aldrin-14C in potatoes and soil under outdoor conditions. J. Agr. Food Chem. 21: 152.

    Article  CAS  Google Scholar 

  • Knaak, J.B., M.J. Tallant, W.J. Bartley, and L.J. Sullivan. 1965. The metabolism of carbaryl in the rat, guinea pig, and man. J. Agr. Food Chem. 13: 537.

    Article  CAS  Google Scholar 

  • Knowles, C.O. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.P. Bederka, Jr., editors. Academic Press, 550 pp.

    Google Scholar 

  • Korte, F. 1967. Metabolism of 14C-labeled insecticides in microorganisms, insects, and mammals. Botgu-Kagaku 32: 46.

    CAS  Google Scholar 

  • Korte, F. 1968. Symposium on the Science and Technology of Residual Insecticides in Food Production With Special Reference to Aldrin and Dieldrin. Shell Oil Company, USA, 244 pp.

    Google Scholar 

  • Korte, F. 1970. IUPAC Commission on Terminal Residues. J. Ass. Off. Analy. Chem. 53: 987.

    Google Scholar 

  • Kuhr, R.J. 1970. Metabolism of carbamate insecticide chemicals in plants and insects. J. Agr. Food Chem. 18: 1023.

    Article  Google Scholar 

  • Kuhr, R.J., and J.E. Casida. 1967. Persistent glycosides of metabolites of methylcarbamate insecticide chemicals formed by hydroxylation in bean plants. J. Agr. Food Chem. 15: 814.

    Article  CAS  Google Scholar 

  • Kuwatsuka, S. 1971. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.

    Google Scholar 

  • Laanio, T.L., G. Dupuis, and H.O. Esser. 1972. Fate of 14C-labeled diazinon in rice, paddy soil, and pea plants. J. Agr. Food Chem. 20: 1213.

    Article  CAS  Google Scholar 

  • Lamoureux, G.L., L.E. Stafford, and F.S. Tanaka. 1971. Metabolism of 2-chloro-N-isopropylacetanilide (propachlor) in the leaves of corn, sorghum, sugarcane, and barley. J. Agr. Food Chem. 19: 346.

    Article  CAS  Google Scholar 

  • Leeling, N.C., and J.E. Casida. 1966. Metabolites of carbaryl (1-naphthyl methylcarbamate) in mammals in enzymatic systems for their formation. J. Agr. Food Chem. 14: 281.

    Article  CAS  Google Scholar 

  • Lemin, A.J. 1966. Absorption, translocation, and metabolism of diphenamid-1-C14 by tomato seedlings. J. Agr. Food Chem. 14: 109.

    Google Scholar 

  • Liu, S.Y., and J.M. Bollag. 1971. Metabolism of carbaryl by a soil fungus. J. Agr. Food Chem. 19: 487.

    Article  Google Scholar 

  • Loos, M.A., R.N. Roberts, and M. Alexander. 1967. Phenols as intermediates in the decomposition of phenoxyacetates by an arthrobacter species. Can. J. Microbiol. 13: 679.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, G., and F. Korte. 1965. Metabolism of insecticides. X. Detection of dieldrin metabolite by GLC analysis. Life Sci. 4: 2027.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F. 1974. Survival in Toxic Environments. M.A.Q. Khan and J.O. Bederka, Jr., editors. Academic Press, 550 pp.

    Google Scholar 

  • Matsumura, F., and G.M. Boush. 1966. Malathion degradation by trichoderma viride and a pseudomonas species. Science 153: 1278.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., G.M. Boush, and T. Misato. 1972. Environmental Toxicology of Pesticides. Academic Press, 637 pp.

    Google Scholar 

  • Matsumura, F., K.S. Patil, and G.M. Boush. 1970. Formation of “photodieldrin” by microorganisms. Science 170: 1206.

    Article  PubMed  CAS  Google Scholar 

  • Matsunaka, S. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.

    Google Scholar 

  • Matsunaka, S., and H. Nakamura. 1972. Mode of action and selectivity mechanism of a herbicide, 5-chloro-4-methyl-2-propionamide-1,3thiazole. Weed Res. ( Tokyo ) 13: 29.

    Google Scholar 

  • Matthews, H.B., and F. Matsumura. 1969. Metabolic fate of dieldrin in the rat. J. Agr. Food Chem. 17: 845.

    Article  CAS  Google Scholar 

  • Matthews, H.B., J.D. McKinney, and G.W. Lucier. 1971. Dieldrin metabolism, excretion, and storage in male and female rats. J. Agr. Food Chem. 19: 1244.

    Article  CAS  Google Scholar 

  • Menzer, R.E., and J.E. Casida. 1965. Nature of toxic metabolites formed in mammals, insects, and plants from 3-(dimethoxphosphinyloxy)-N,N-dimethyl-cis-crotonamide and its N-methyl analog. J. Agr. Food Chem. 13: 102.

    Article  CAS  Google Scholar 

  • Menzie, C.M. 1966. Metabolism of pesticides. U.S. Department of Interior, Fish and Wildlife Service, Special Scientific Rep. No. 96 (Wildlife). 274 pp.

    Google Scholar 

  • Miskus, R.P., D.P. Blair, and J.E. Casida. 1965. Conversion of DDT to DDD by bovine rumen fluid, lake water, and reduced porphyrins. J. Agr. Food Chem. 13: 481.

    Article  CAS  Google Scholar 

  • Miyamoto, J. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.

    Google Scholar 

  • Miyamoto, J., A. Kitagawa, and Y. Sato. 1966. Metabolism of organo-phosphorus insecticides by Bacillus subtilis with special emphasis on Sumithion. Jap. J. Expt. Med. 36: 211.

    CAS  Google Scholar 

  • Miyazaki, S., G.M. Boush, and F. Matsumura. 1970. Microbial degradation of chlorobenzilate (ethyl 4,4’-dichlorobenzilate) and chloropropylate (isopropyl 4,4’-dichlorobenzilate). J. Agr. Food Chem. 18: 87.

    Article  CAS  Google Scholar 

  • Nashed, R.B., S.E. Katz, and R.D. Illnicki. 1970. The metabolism of 14C-chlorbromuron in corn and cucumber. Weed Sci. 18: 122.

    CAS  Google Scholar 

  • National Academy of Sciences. 1972. Degradation of synthetic organic molecules in the biosphere, Proceedings of a conference in San Francisco, June, 1971, 350 pp.

    Google Scholar 

  • Neudorf, S., and M.A.Q. Khan. 1974. Paper presented at the 7th annual meeting of the Illinois State Academy of Sciences, submitted to Bull. Environ. Contam. Toxicol.

    Google Scholar 

  • O’Brien, R.D. 1962. Metabolic Factors Controlling Duration of Drug Action. B.B. Brodie and E.G. Erdos, editors. McMillan (Pergammon) Press, p. 111.

    Google Scholar 

  • O’Brien, R.D. 1967. Insecticides: Action and Metabolism. Academic Press, 378 pp.

    Google Scholar 

  • O’Brien, R.D. and I. Yamamoto. 1970. Biochemical Toxicology of Insecticides. Academic Press, 218 pp.

    Google Scholar 

  • Perry, A.S. 1964. The physiology of insecticide resistance by insects. Physiology of Insects. M. Rockstein, editor. Academic Press, Vol. 3: 286.

    Google Scholar 

  • Pinto, J.D., M.N. Camien, and M.S. Dunn. 1965. Metabolic fate of p,p’-DDT[1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] in rats. J. Biol. Chem. 240: 2148.

    PubMed  CAS  Google Scholar 

  • Rogers, R.L. 1971. Absorption, translocation, and metabolism of p-nitrophenyl-a,a,a-trifluoro-2-nitro-p-tolyl ether by soybeans. J. Agr. Food Chem. 19: 32.

    Google Scholar 

  • Rosen, J.D., and D.J. Sutherland. 1967. The nature and toxicity of the photoconversion products of aldrin. Bull. Environ. Contam. Toxicol. 2: 1.

    Article  CAS  Google Scholar 

  • Runnels, J.M., and M.A.Q. Khan. 1973. Hepatic mixed-function oxidase activity towards cyclodiene insecticides in the domestic pigeon. Amer. Zool. 13: 1308.

    Google Scholar 

  • Shimabukuro, R.H., H.R. Swanson, and W.C. Walsh. 1970. Atrazine detoxication mechanism in corn. Plant Physiol. 46: 103.

    Article  PubMed  CAS  Google Scholar 

  • Sijperstein, A.K., and J. Kaslander. 1964. Metabolism of fungi- cides by plants and microorganisms. Outlook Agr. 4: 119.

    Google Scholar 

  • Smith, J.N. 1968. The comparative metabolism of xenobiotics. In Advances in Comparative Biochemistry and Physiology. 0. Lowenstein, editor. 3: 173.

    Google Scholar 

  • Stanton, R.H., and M.A.Q. Khan. 1973. Mixed-function oxidase activity toward cyclodiene insecticides in bass and bluegill sunfish. Pest. Biochem. Physiol. 3: 351.

    Article  CAS  Google Scholar 

  • Stenersen, J.H.V. 1965. DDT-metabolism in resistant and susceptible stableflies and in bacteria. Nature 207: 660.

    Article  PubMed  CAS  Google Scholar 

  • Still, G.G. 1968. Metabolism of 3,4-dichloropropionanilide in plants: The metabolic fate of the 3,4-dichloroaniline moiety. Science 159: 992.

    Article  PubMed  CAS  Google Scholar 

  • Stromme, J.H. 1965. Metabolism of disulfiram and diethyldithiocarbamate in rats with demonstration of an in vivo ethanol-induced inhibition of the glucuronic acid conjugation of the thiol. Biochem. Pharmacol. 14: 393.

    Article  CAS  Google Scholar 

  • Tatsukawa, R., T. Wakimoto, and T. Ogawa. 1970. J. Food Hyg. Soc. ( Japan ) 11: 1.

    Article  Google Scholar 

  • Taylor, H.F., and R.L. Wain. 1962. Side-chain degradation of certain w-phenoxyalkane carboxylic acids by Noeardia cooliaca and other microorganisms isolated from soil- Proceed. Royal Soc. London (Series B) 156: 172.

    Google Scholar 

  • Thomas, E.W., B.C. Loughman, and P.G. Powell. 1964a. Metabolic fate of some chlorinated phenoxyacetic acids in the stem tissue of Avena sativa. Nature 204: 286.

    Article  CAS  Google Scholar 

  • Thomas, E.W., B.C. Loughman, and P.G. Powell. 1964b. Metabolic fate of 2,4-dichlorophenoxyacetic acid in the stem tissue of Phasoolus vulgaris. Nature 204: 884.

    Article  CAS  Google Scholar 

  • Tipton, C.C., R.R. Husted, and F.H.C. Tsao. 1971. Catalysis of simazine hydrolysis by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin3-one. J. Agr. Food Chem. 19: 484.

    Article  CAS  Google Scholar 

  • Tonomura, K., K. Furukawa, and M. Yamada. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.

    Google Scholar 

  • Tsukano, U., and A. Kobayashi. 1972. Formation of y-BTC in flooded rice field soils treated with y-BHC. Agr. Biol. Chem. 36: 166.

    Article  CAS  Google Scholar 

  • Uesugi, Y., C. Tomizawa, and T. Murai. 1972. Environmental Toxicology of Pesticides. F. Matsumura, G.M. Boush, and T. Misato, editors. Academic Press, 637 pp.

    Google Scholar 

  • Wain, R.L. 1955. A new approach to selective weed control. Ann. Appl. Biol. 42: 151.

    Google Scholar 

  • Williams, I.H., M.J. Brown, and D.G. Finlayson. 1972. Determination of residues of fensulfothion and its sulfone in muck soil. J. Agr. Food Chem. 20: 1219.

    Article  CAS  Google Scholar 

  • Williams, R.T. 1959. Detoxication Mechanisms. Chapman 4 Hall, London, Second Edition, 796 pp.

    Google Scholar 

  • Williams, R.T. 1964a. Excerpta Med. Intern. Congr. Ser. 81: 9.

    Google Scholar 

  • Williams, R.T. 1964b. Metabolism of phenolics in animals. In Biochemistry of Phenolic Compounds. J.B. Harborne, editor. Academic Press, p. 205.

    Google Scholar 

  • Yih, R.Y., D.H. McRae, and H.F. Wilson. 1968. Mechanism of selective action of 3’,4’-dichloropropionanilide. Plant Physiol. 43: 1291.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S.J., U. Kiigemagi, and L.C. Terriere. 1971. Oxidative metabolism of aldrin and isodrin by bean root fractions. J. Agr. Food Chem. 19: 5.

    Article  CAS  Google Scholar 

  • Zayed, S.M.A.D., I.Y. Mostafa, and A. Hassan. 1965. Metabolism of organophosphorus insecticides. VII. Transformation of 32P-labeled dipterex through microorgansism. Archiv. Eur. Mikrobiologie 51: 118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Khan, M.A.Q., Gassman, M.L., Ashrafi, S.H. (1975). Detoxication of Pesticides by Biota. In: Haque, R., Freed, V.H. (eds) Environmental Dynamics of Pesticides. Environmental Science Research, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2862-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2862-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2864-3

  • Online ISBN: 978-1-4684-2862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics