Skip to main content

Estimation of the State of Ions in Smooth Muscle

  • Chapter
Smooth Muscle

Abstract

It would seem desirable to be able to describe the state of an ionic species in the smooth muscle under study as accurately as possible. However, a complete description of the state of an ion, for example, of Na+, would require that the instantaneous values of all the relevant microscopic parameters, such as the position, velocity, energy, and interaction with the neighboring atoms, be specified for every single Na+, ion present in the preparation. Apart from the obvious fact that determination of this kind is impossible, the resulting set of data would be so complex that it could hardly serve any practical purpose. In order to simplify the description, one could consider the possibility of dividing the preparation into homogeneous volume elements. These elements would have to be small enough to ensure their homogeneity and yet large enough so that the Na+, ions contained in every element could be treated as a statistical assembly. Under these conditions, it would be possible to characterize the state of the assembly of Na+, ions in each volume element by the mean values of the above microscopic parameters, usually in terms of the corresponding macroscopic quantities such as the concentration cNa+, the flux J Na +, and the chemical potential µNa + . Accurate though it might be to describe the state of the ion in the preparation by a set of values of local macroscopic quantities, such a description still would be too complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, W. McD. and Lee, C. O. 1971. Sodium and potassium activities in normal and “sodium-rich” frog skeletal muscle. Science, 171:413–414.

    Article  PubMed  CAS  Google Scholar 

  • Ashley, C. C. and Ellory, J. C. 1972. The efflux of magnesium from single crustacean muscle fibres. J. Physiol, 226:653–674.

    PubMed  CAS  Google Scholar 

  • Ashley, C. C. and Ridgway, E. B. 1968. Simultaneous recording of membrane potential, calcium transient and tension in single muscle cells. Nature, 219:1168–1169.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F. and Crawford, A. C. 1972. Mobility and transport of magnesium in squid giant axons. J. Physiol, 227:855–874.

    PubMed  CAS  Google Scholar 

  • Bates, R. G. and Alfenaar, M. 1969. Activity standards for ion-selective electrodes. In: Ion-Selective Electrodes, pp. 191–214. Ed. by Durst, A. National Bureau of Standards Special Publication 314, Washington, D.C.

    Google Scholar 

  • Belton, P. S., Jackson, R. R., and Packer, K. J. 1972. Pulsed NMR studies of water in striated muscle. I. Transverse nuclear spin relaxation times and freezing effects. Biochim. Biophys. Acta, 286:16–25.

    Article  PubMed  CAS  Google Scholar 

  • Berendsen, H. J. C. and Edzes, H. T. 1973. The observation and general interpretation of sodium magnetic resonance in biological material. Ann. N. Y. Acad. Sci., 204:459–485.

    Article  PubMed  CAS  Google Scholar 

  • Brading, A. F. 1971. Analysis of the efflux of sodium, potassium and chloride ions from smooth muscle in normal and hypertonic solutions. J. Physiol., 214:393–416.

    PubMed  CAS  Google Scholar 

  • Brading, A. F. 1973. Ion distribution and ion movements in smooth muscle.Phil. Trans. R. Soc. Lond. B, 265:35–46.

    Article  CAS  Google Scholar 

  • Brading, A. F. and Jones, A. W. 1969. Distribution and kinetics of CoEDTA in smooth muscle, and its use as an extracellular marker. J. Physiol., 200:387–401.

    PubMed  CAS  Google Scholar 

  • Brinley, F. J. Jr. 1968. Sodium and potassium fluxes in isolated barnacle muscle fibers. J. Gen. Physiol., 51:445–477.

    Article  PubMed  CAS  Google Scholar 

  • Buck, B. and Goodford, P. J. 1966. The distribution of ions in the smooth muscle of the guinea-pig taenia coli. J. Physiol, 183:551–569.

    PubMed  CAS  Google Scholar 

  • Caillè, J. P. 1973. Evidence for K+ and Cl binding inside muscle from diffusion studies. Can. J. Physiol Pharmacol, 50:228–237.

    Article  Google Scholar 

  • Caillè, J. P. and Hinke, J. A. M. 1972. Evidence for Na sequestration in muscle from Na diffusion measurements. Can. J. Physiol Pharmacol, 50:228–237.

    Article  PubMed  Google Scholar 

  • Caillè, J. P. and Hinke, J. A. M. 1974. The volume available to diffusion in the muscle fiber. Can. J. Physiol Pharmacol, 52:814–828.

    Article  PubMed  Google Scholar 

  • Casteels, R. 1969. The relation between the membrane potential and the ion distribution in smooth muscle cells. In: Smooth Muscle, pp. 70–99. Ed. by Bülbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.

    Google Scholar 

  • Casteels, R. 1971. The distribution of chloride ions in the smooth muscle cells of the guinea-pig’s taenia coli. Physiol., 214:225–243.

    CAS  Google Scholar 

  • Casteels, R. and Kuriyama, H. 1966. Membrane potential and ion content in the smooth muscle cells of the guinea-pig’s taenia coli at different external potassium concentrations. J. Physiol, 184:120–130.

    PubMed  CAS  Google Scholar 

  • Casteel, R., Raeymaekers, L., Goffin, J., and Wuytack, F. 1973. A study of factors affecting the cellular calcium content of smooth muscle cells.Arch. Int. Pharmacodyn., 201:191–192.

    Google Scholar 

  • Civan, M. M. and Shporer, M. 1972. 17O nuclear magnetic resonance spectrum of in frog striated muscle. Biophys. J.,12:404–413.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. and Wien, R. 1973. Nuclear magnetic resonance studies of intracellular water protons. Ann. N.Y.Acad. Sci, 204:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Cope, F. W. 1967. NMR evidence for complexing of Na+ in muscle, kidney and brain, and by actomyosin. J. Gen. Physiol., 50:1353–1375.

    Article  PubMed  CAS  Google Scholar 

  • Czeisler, J. L. and Swift, T. J. 1973. A comparative study of sodium ion in muscle tissue and ion exchange resins through the application of nuclear magnetic resonance. Ann. N.Y. Acad. Sci., 204:261–273.

    Article  PubMed  CAS  Google Scholar 

  • Czeisler, J. L., Fritz, O. G., Jr., and Swift, T. J. 1970. Direct evidence from nuclear magnetic resonance studies for bound sodium in frog skeletal muscle. Biophys. J., 10:260–268.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, E. E. and Robinson, K. 1960. The secretion of sodium and uptake of potassium by isolated uterine segments made sodium-rich. J. Physiol., 154: 421–444.

    PubMed  CAS  Google Scholar 

  • Devine, C. E., Somlyo, A. V., and Somlyo, A. P. 1972. Sarcoplasmic reticulum and excitation-contraction coupling in mammaHan smooth muscles. J. Cell Biol, 52:690–718.

    Article  PubMed  CAS  Google Scholar 

  • Dunstone, J. R. 1962. Ion-exchange reactions between acid mucopolysaccharides and various cations. Biochem. J., 85:336–351.

    PubMed  CAS  Google Scholar 

  • Eisenman, G. 1962. Cation-selective glass electrodes and their mode of operation. Biophys. J., 2(Suppl. to No. 2): 259–323.

    Article  PubMed  CAS  Google Scholar 

  • Elford, B. C. 1970. Diffusion and distribution of dimethylsulfoxide in the isolated guinea-pig taenia coli. J. Physiol, 209:187–208.

    PubMed  CAS  Google Scholar 

  • England, P. J., Denton, R. M., and Randle, P. J. 1967. The influence of magnesium ions and other bivalent metal ions on the aconitase equilibrium and its bearing on the binding of magnesium ions by citrate in rat heart. Biochem. J., 105:32C-33C.

    PubMed  CAS  Google Scholar 

  • Filo, R. S., Bohr, D. F., and Rüegg, J. C. 1965. Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science, 147:1581–1583.

    Article  PubMed  CAS  Google Scholar 

  • Finch, E. D., Harmon, J. F., and Muller, B. H. 1971. Pulsed NMR measurements of the diffusion constant of water in muscle. Arch. Biochem. Biophys., 147:299–310.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, S. M. 1974. Lithium substitution and the distribution of sodium in the rat tail artery. Circulation Res., 34:168–175.

    Article  PubMed  CAS  Google Scholar 

  • Garay, R. P. and Garrahan, P. J. 1973. The interaction of sodium and potassium with the sodium pump in red cells.J. Physiol, 231:297–325.

    PubMed  CAS  Google Scholar 

  • Glasel, J. A. and Lee, K. H. 1974. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc., 96:970–978.

    Article  CAS  Google Scholar 

  • Goodford, P. J. 1964. Chloride content and 36Cl uptake in the smooth muscle of the guinea-pig taenia coli. J. Physiol, 170:227–237.

    PubMed  CAS  Google Scholar 

  • Goodford, P. J. 1966. An interaction between potassium and sodium in the smooth muscle of the guinea- pig taenia coli. J. Physiol, 186:11–26.

    PubMed  CAS  Google Scholar 

  • Goodford, P. J. 1967. The calcium content of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 192:145–157.

    PubMed  CAS  Google Scholar 

  • Goodford, P. J. 1970. Ionic interactions in smooth muscle. In: Smooth Muscle, pp. 100–121. Ed. by Bülbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.

    Google Scholar 

  • Gottlieb, M. H. 1971. On the rates of exchange between free and bound counterions in polyelectrolyte solutions. J. Phys. Chem., 57:1990–1993.

    Article  Google Scholar 

  • Haljamäe, H., Johansson, B., Jonsson, O., and Röckert, H. 1970. The distribution of sodium, potassium and chloride in the smooth muscle of the rat portal vein. Acta Physiol Scand., 78:255–268.

    Article  PubMed  Google Scholar 

  • Headings, V. E., Rondell, P. A., and Bohr, D. F. 1960. Bound sodium in artery wall. Am. J. Physiol, 199:783–787.

    PubMed  CAS  Google Scholar 

  • Hinke, J. A. M. 1959. Glass Microelectrodes for measuring extracellular activities of sodium and potassium. Nature, 184: 1257–1258.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M. 1967. Cation selective microelectrodes for intracellular use. In: Glass Electrodes for Hydrogen and Other Cations, pp. 464–477. Ed. by Eisenman, G. Marcel Dekker, New York.

    Google Scholar 

  • Hinke, J. A. M. 1970. Solvent water for electrolytes in the muscle fiber of the giant barnacle. J. Gen. Physiol., 56:521–541.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M. and Gayton, D. C. 1971. Transmembrane K+ and Cl activity gradients for the muscle fiber of the giant barnacle. Can. J. Physiol Pharmacol, 49:312–322.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M., Caillé, J. P. and Gayton, D. C. 1973. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses. Ann. N. Y. Acad. Sci., 204:274–296.

    Article  PubMed  CAS  Google Scholar 

  • Hollander, W., Kramsch, D. M., Yagi, S., and Madoff, L M. 1966. Metabolic and hemodynamic factors in the increased salt and water content of hypertensive arteries. In: Arterial Hypertension, pp. 305–326. Ed. by Milliez, P. and Tcherdakoff, P. L’Expansion Scientifique Francaise, Paris.

    Google Scholar 

  • Hurwitz, L., Fitzpatrick, D. F., Debbas, G., and Landon, E. J. 1973. Localization of calcium pump activity in smooth muscle.Science, 179:384–386.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. W. and Swain, M. L. 1972. Chemical and kinetic analyses of sodium distribution in canine lingual artery. Am. J. Physiol., 223:1110–l118.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., Sorokina, Z. A., and Kholodova, Yu. D. 1969. Measurement of activity of hydrogen, potassium and sodium ions in striated muscle fibers and nerve cells. In: Glass Microelectrodes, pp. 322–348. Ed. by Lavallee, M., Schanne, O. F., and Hebert, N. C. Wiley, New York.

    Google Scholar 

  • Krasne, S. and Eisenman, G. 1973. The molecular basis of ion selectivity. In: Membranes: A Series of Advances, Vol. 2, pp. 277–328. Ed. by Eisenman, G. Marcel Dekker, New York.

    Google Scholar 

  • Kushmerick, M. J. and Podolsky, R. J. 1969. Ionic mobility in muscle cells. Science, 166:1297–1298.

    Article  PubMed  CAS  Google Scholar 

  • Lev, A. A. 1964. Determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibres. Nature, 201:1132–1134.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. S. and Saroff, H. A. 1957. The binding of ions to the muscle proteins. Measurements on the binding of K and Na ions to myosin A, myosin B and actin. J. Am. Chem. Soc., 79:2112–2117.

    Article  CAS  Google Scholar 

  • Ling, G. N. 1962. A Physical Theory of the Living State: The Association-Induction Hypothesis. Blaisdell, New York.

    Google Scholar 

  • Ling, G. N. and Ochsenfeld, M. M. 1973. Control of cooperative adsorption of solutes and water in living cells by hormones, drugs, and metabolic products. Ann. N. Y. Acad. Sci., 204:325–336.

    Article  PubMed  CAS  Google Scholar 

  • Ling, G. N., Miller, C., and Ochsenfeld, M. M. 1973. The physical state of solutes and water in living cells according to the association-induction hypothesis. Ann. N. Y. Acad. Sci., 204:6–47.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. G. A. and Hinke, J. A. M. 1966. Sodium and water binding in single striated muscle fibers of the giant barnacle.Can. J. Physiol. Pharmacol., 44:837–848.

    Article  PubMed  CAS  Google Scholar 

  • Mihalyi, E. 1950. The dissociation curves of crystalline myosin. Enzymologia, 14:224–236.

    PubMed  CAS  Google Scholar 

  • Molinari-Tosatti, M. P., Gotte, L., and Moret, V. 1971. Binding of calcium ions to elastin. Calcif. Tissue Res., 6:329–334.

    Article  PubMed  CAS  Google Scholar 

  • Needham, D. M. and Shoenberg, C. F. 1967. The biochemistry of the myometrium. In: Cellular Biology of the Uterus, pp. 291–352. Ed. by Wynn, R. M. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Paillard, M. 1972. Direct intracellular pH measurement in rat and crab muscle. J. Physiol., 223:291–319.

    Google Scholar 

  • Palatý, V. 1971. Distribution of magnesium in the arterial wall. J. Physiol., 218:353–368.

    PubMed  Google Scholar 

  • Palatý, V. 1974. Regulation of the cell magnesium in vascular smooth muscle. J. Physiol., 242:555–569.

    PubMed  Google Scholar 

  • Palatý, V., Gustafson, B., and Friedman, S. M. 1969. Sodium binding in the arterial wall. Can. J. Physiol. Pharmacol., 47:763–770.

    Google Scholar 

  • Portzehl, H., Caldwell, P. C., and Rüegg, J. C. 1964. The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochem. Biophys. Acta, 79:581–591.

    PubMed  CAS  Google Scholar 

  • Reuter, H., Blaustein, M. P., and Haeusler, G. 1973. Na-Ca exchange and tension development in arterial smooth muscle. Phil. Trans. R. Soc. Lond. B, 265:87–94.

    Article  CAS  Google Scholar 

  • Shimomura, O. and Johnson, F. H. 1969. Properties of the bioluminiscent protein aequorin. Biochemistry, 8:3991–3991.

    Article  PubMed  CAS  Google Scholar 

  • Shporer, M. and Civan, M. M. 1972. Nuclear magnetic resonance of sodium-23 linoleate-water. Basis for an alternative interpretation of Na-23 spectra within cells. Biophys. J., 12:114–122.

    Article  PubMed  CAS  Google Scholar 

  • Sjodin, R. A. and Beauge, L. A. 1973. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells. J. Gen. Physiol., 61:222–250.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A. V. and Somlyo, A. P. 1971. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science, 174:955–951.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, M. P. 1969. Interaction of 28Mg with Ca and K in the smooth muscle of guinea-pig taenia coli. J. Physiol, 205:19–38.

    PubMed  CAS  Google Scholar 

  • Swift, T. J. and Barr, E. M. 1973. An oxygen magnetic resonance study of water in frog skeletal muscle. Ann. N.Y. Acad Sci., 204:191–196.

    Article  Google Scholar 

  • Tait, M. J. and Franks, F. 1971. Water in biological systems. Nature, 230:91–94.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, R. C. 1970. New design for sodium-sensitive glass microelectrode. J. Physiol., 210:82P-83P.

    PubMed  CAS  Google Scholar 

  • Tomita, T. and Watanabe, H. 1973. Factors controlling myogenic activity in smooth muscle. Phil Trams. R. Soc. Lond. B, 265:73–85.

    Article  CAS  Google Scholar 

  • Van Breemen, C., Farinas, B. R., Gerba, P., and McNaughton, E. D. 1972. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circulation Res., 30:44–54.

    Article  PubMed  Google Scholar 

  • Van Breemen, C., Farinas, B., Casteels, R., Gerba, P., Wuytack, F., and Deth, R. 1973. Factors controlling cytoplasmic Ca2 +concentration. Phil. Trans. R. Soc. Lond. B, 265:57–71.

    Article  Google Scholar 

  • Veloso, D., Guynn, R. W., Oskarsson, M., and Veech, R. L. 1973. The concentration of free and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations. J. Biol. Chem., 248:4811–4819.

    PubMed  CAS  Google Scholar 

  • Wahlström, B. A. 1973. Ionic fluxes in the rat portal vein and the applicability of the Goldman equation in predicting the membrane potential from flux data. Acta Physiol. Scand., 89:436–448.

    Article  PubMed  Google Scholar 

  • Walker, J. L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem., 43:89A-93A.

    Article  CAS  Google Scholar 

  • Walker, J. L. and Ladle, R. O. 1973. Frog heart intracellular potassium activities measured with potassium microelectrodes. Am. J. Physiol., 225:263–267.

    PubMed  CAS  Google Scholar 

  • Weinstock, A., King, P. C., and Wuthier, R. E. 1967. The ion-binding characteristics of reconstituted collagen. Biochem. J., 102:983–988.

    PubMed  CAS  Google Scholar 

  • Yeh, H. J. C., Brinley, F. J., Jr., and Becker, E. D. 1973. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. Biophys. J., 13:56–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Palaty, V., Friedman, S.M. (1975). Estimation of the State of Ions in Smooth Muscle. In: Daniel, E.E., Paton, D.M. (eds) Smooth Muscle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2751-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2751-6_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2753-0

  • Online ISBN: 978-1-4684-2751-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics