Skip to main content

Physical Properties of Contractile Systems

  • Chapter
Smooth Muscle

Abstract

There is emerging a consensus among investigators that the skeletal muscle model probably fits smooth muscle also. This is based on ultrastructural, biophysical, and biochemical evidence, and suggests that the classical experimental techniques used for the former muscle may be employed profitably in the study of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg, A. K. G. 1961. The series elasticity of active taenia coli in vitro. Acta Physiol. Scand.,, 69:348–354.

    Google Scholar 

  • Aberg, A. K. G. and Axelsson, J. 1965. Some mechanical aspects of an intestinal smooth muscle. Acta Physiol. Scand.,, 64:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, R. S. 1971a. Contribution of plastoelasticity to the tone of the cat portal vein. Circ. Res., 28:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, R. S. 1971b. Mechanical properties of urinary bladder. Am. J. Physiol., 220:1413–1421.

    PubMed  CAS  Google Scholar 

  • Aubert, X. 1955. Intervention d’un dement elastique pur dans la contraction du muscle strie. Arch. Intern. Physiol. Biochim., 63:197–202.

    Article  CAS  Google Scholar 

  • Axelsson, J. 1970. Mechanical properties of smooth muscle, and the relationship between mechanical and electrical activity. In: Smooth Muscle, pp. 289–315. Ed. by Bülbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.

    Google Scholar 

  • Bahler, A. S. 1967. Series elastic component of mammalian skeletal muscle. Am. J. Physiol, 271:1560–1564.

    Google Scholar 

  • Bayliss, W. M. 1902. On the local reactions of the arterial wall to changes in internal pressure. J. Physiol. (Lond.), 28:220–231.

    CAS  Google Scholar 

  • Bergel, D. H. 1961. The static elastic properties of the arterial wall. J. Physiol. (Lond.), 156:445–457.

    CAS  Google Scholar 

  • Brady, A. J. 1965. Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed. Proc., 24: 1410–1420.

    PubMed  CAS  Google Scholar 

  • Buccino, R. A., Spann, Jr., J. P., Pool, P. E., Sonnenblick, E. H., and Braunwald, E. 1967. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J. Clin. Invest., 46:1669–1682.

    Article  PubMed  CAS  Google Scholar 

  • Buchthal, F. and Kaiser, E. 1944. Factors determining the tension development in skeletal muscle. Acta Physiol. Scand.,, 8:38–74.

    Article  Google Scholar 

  • Burnstock, G. 1970. Structure of smooth muscle and its innervation. In: Smooth Muscle. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Edward Arnold, London.

    Google Scholar 

  • Burnstock, G. and Prosser, C. L. 1960. Responses of smooth muscles to quick stretch: Relation of stretch to conduction. Am. J. Physiol., 198:921–925.

    PubMed  CAS  Google Scholar 

  • Burton, A. C. 1962. Physical principles of circulatory phenomena: the physical equilibria of the heart and blood vessels. In: Handbook of Physiology, Section 2, Vol. 1, Circulation, p. 85. Ed. by Hamilton, W. F. and Dow, P. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Civan, M. M. and Podolsky, R. J. 1966. Contraction kinetics of striated muscle fibres following quick changes in load. J. Physiol. (Lond.), 754:511–534.

    Google Scholar 

  • Conrad, J. T. and Kuhne, W. 1970. The active length-tension relationship in human uterine muscle. Am. J. Obs.Gynec.,97: 154–160.

    Google Scholar 

  • Csapo, Ä. 1962. Smooth muscle as a contractile unit. Physiol. Rev., 42(Suppl. 5): 7–53.

    Google Scholar 

  • Csapo, A and Goodall, M. 1954. Excitability, length-tension reaction and kinetics of uterine muscle contraction in relation to hormonal status. J. Physiol. (Lond.), 726:384–395.

    Google Scholar 

  • Dawkins, O. and Bohr, D. F. 1960. Sodium and potassium movement in the excised rat aorta. Am. J. Physiol., 799:28–30.

    Google Scholar 

  • Dobrin, P. B. and Doyle, J. M. 1970. Vascular smooth muscle and the anistrophy of dog carotide artery. Circ. Res., 27:105–119.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B. 1964. Description ofthe myogenic reflex. Circ.Res.(Suppl. 1 to Vols. XIV and XV): 1-279–1-287.

    Google Scholar 

  • Gabe, LT. 1965. The measurement of oscillatory blood flow and impedance in the human external iliac artery. Clin. Sci., 29:45–58.

    PubMed  CAS  Google Scholar 

  • Gordon, D. B. and Nogueira, A. 1962. Increased vascular reactivity in experimental hypertension. Circ. Res., 70:269–273.

    Article  Google Scholar 

  • Gordon, A. R. and Siegman, M.J. 1971. Mechanical properties of smooth muscle. 1. Length-tension and force-velocity relations. Am. J. Physiol., 227:1234–1249.

    Google Scholar 

  • Gordon, A. R. and Sigman, M. J. 1971. Mechanical properties of smooth muscle. II. Active State. Am. J. Physiol., 221:1234–1249.

    Google Scholar 

  • Hill, A. V. 1913. The absolute mechanical efficiency of the contraction of an isolated muscle. J. Physiol. (Lond.) 46:435.

    CAS  Google Scholar 

  • Hill, A. V. 1938–1939. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, 126:136–195.

    Article  Google Scholar 

  • Hill, A. V. 1956. The series elastic component of muscle. Proc. R. Soc. Lond. B, 137:273–280.

    Article  Google Scholar 

  • Hill, A. V. 1970. Statistical nature of p-v relation. In: First and Last Experiments in Muscle Mechanics, pp. 52–55. Cambridge Univ. Press.

    Google Scholar 

  • Hochberger, A.I. and Zweifach, B. W. 1968. Analysis of critical closing pressure in the perfused rabbit ear. Am. J. Physiol., 214:962–968.

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. 1971. Proposed mechanism of force generation in striated muscle. Nature., 233: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Jewell, B. K. and Wilkie, D. R. 1958. An analysis of the mechanical components in frog’s striated muscle. J. Physiol. (Lond.), 143:515–540.

    CAS  Google Scholar 

  • Katz, B. 1939. The relation between force and speed in muscular contraction. J. Physiol. (Lond.), 96:45–64.

    CAS  Google Scholar 

  • Levin, A. and Wyman, J. 1927. The viscous elastic properties of muscle. Proc. R. Soc. Lond. B, 101:218–243.

    Article  Google Scholar 

  • Levy, J. 1971. Isolated atrial preparations. In: Methods in Pharmacology, Vol. I. Ed. by Schwartz, A. Appleton-Centry-Crofts, New York.

    Google Scholar 

  • Loofbourrow, G. N., Wood, W. B., and Bourd, I. L. 1957. Tracheal constriction in the dog. Am. J. Physiol., 79(2):411–415.

    Google Scholar 

  • Luchsinger, P. C., Sachs, M., and Patel, D. J. 1962. Pressure-radius relationship in large blood vessels of man. Circ. Res., 77:885–888.

    Article  Google Scholar 

  • Lundholm, L. and Mohme-Lundholme, E. 1966. Length at inactivated contractile elements, length- tension diagram, active state and tone of vascular smooth muscle. Acta Physiol. Scand.,, 68:345–359.

    Article  Google Scholar 

  • Maxwell, J. A. and Anliker, M. 1968. The dissipation and dispersion of small waves in arteries and veins with visco-elastic wall properties. Biophys. J., 920–950.

    Google Scholar 

  • McDonald, D. A. 1960. Blood Flow in Arteries. Arnold, London.

    Google Scholar 

  • Meiss, R. A. 1971. Some mechanical properties of cat intestinal muscle. Am. J. Physiol., 220:2000–2007.

    PubMed  CAS  Google Scholar 

  • Mellander, S., Oberg, B., and Odelram, H. 1964. Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol. Scand.,, 61:34–48.

    Article  PubMed  CAS  Google Scholar 

  • Ostle, B. 1956. Regression Analysis—I. One independent variable. In: Statistics in Research, pp. 117–201. Iowa State College Press, Ames, Iowa.

    Google Scholar 

  • Parmley, W. W. and Sonnenblick, E. H. 1971. The series elasticity of heart muscle during hypoxia. Cardiovasc. Res., 5:10–14.

    Article  PubMed  Google Scholar 

  • Pennycuick, C. J. 1964. II. A method of measuring internal series compHance. J. Exp. Biol., 41:113–118.

    PubMed  CAS  Google Scholar 

  • Rice, R. v., McManus, G., Devine, C., and Somlyo, A. P. 1971. Regular organization of thick filaments in mammalian smooth muscle. Nature. (New Biol.), 231:242–243.

    CAS  Google Scholar 

  • Rudel, R. and Taylor, S. R. 1969. The influence of stimulus parameters in contractions of isolated frog muscle fibres. J. Physiol., 205:499–513.

    PubMed  CAS  Google Scholar 

  • Sonnenblick, E. H. 1962. Implications of muscle mechanics in the heart. Fed. Proc., 27:975–990.

    Google Scholar 

  • Sonnenblick, E. H. 1964. Series elastic and contractile elements in heart muscle. Changes in muscle length. Am. J. Physiol, 207:1330–1338

    PubMed  CAS  Google Scholar 

  • Sparks, H. V. 1964. Effect of quick stretch on isolated vascular smooth muscle. Circ. Res. (Suppl. 1 to Vols. XIV and XV): 1-254–1-260.

    Google Scholar 

  • Sperelakis, N. 1962. Contraction of depolarized smooth muscle by electric fields. Am. J. Physiol., 202:722–742.

    Google Scholar 

  • Stephens, N. L. and Kroeger, E. A. 1970. Effect of hypoxia on airway smooth muscle mechanics and electro-physiology. J. Appl. Physiol., 24:630–635.

    Google Scholar 

  • Stephens, N. L. and Kroeger, E. A. 1972. Biophysical study of the myogenic reflex in airway smooth muscle. Biophys. Soc. Abstracts. 16th Annual meeting, p. 75a.

    Google Scholar 

  • Stephens, N. L. and Kromer, U. 1971. Series elastic component of tracheal smooth muscle. Am. J. Physiol., 220:1890–1895.

    PubMed  CAS  Google Scholar 

  • Stephens, N. L. and Wrogemann, K. 1970. Oxidative phosphorylation in smooth muscle. Am. J. Physiol., 279:1796–1801.

    Google Scholar 

  • Stephens, N. L., Meyers, J. L., and Cherniack, R. M. 1968. Oxygen, carbon dioxide, H+ ion and bronchial length-tension relationships. J. Appl. Physiol, 25:376–383.

    CAS  Google Scholar 

  • Stephens, N. L., Kroeger, E., and Mehta, J. A. 1969. Force-velocity characteristics of respiratory airway smooth muscle. J. Appl. Physiol., 24:685–692.

    Google Scholar 

  • Wilkie, D. R. 1956. Measurement of the series elastic component at various times during a single twitch. Physiol. 134:521–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Stephens, N.L. (1975). Physical Properties of Contractile Systems. In: Daniel, E.E., Paton, D.M. (eds) Smooth Muscle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2751-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2751-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2753-0

  • Online ISBN: 978-1-4684-2751-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics