Skip to main content

Recording of Intracellular Electrical Activity with the Voltage-Clamp Technique with Double Sucrose Gap

  • Chapter
Smooth Muscle

Abstract

In most nerve fibers, when depolarization of the membrane once reaches the critical firing level, the action potential is produced in an explosive manner. According to the ionic theory, this is due to dependence of the Na conductance on the membrane potential; i.e., the Na conductance is increased by depolarization allowing inward Na current and this inward movement of positive ions in turn depolarizes the membrane further, the process thus being regenerative. Therefore, in order to fully analyze the relationship between the membrane potential and ionic conductances, it is necessary to prevent the membrane potential from moving and to clamp it at constant selected values with a special device. This “voltage-clamp” method provides another advantage. Since the membrane has resistive and capacitive components in parallel, the current flowing across the membrane is divided into resistive (ionic) current and capacitive current whenever changes in the membrane potential occur. However, under the ideal voltage-clamp condition, the capacitive current can be eliminated, except in a transient phase of the potential step since this current is proportional to the rate of potential change, and thus measurements of ionic current become possible.

Recipient of Career Award, HE 11564 From the National Heart and Lung Institute, NIH, Bethesda, Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, N. C. 1969. Voltage-clamp studies on uterine smooth muscle. J. Gen. Physiol., 54:145–165.

    Article  PubMed  Google Scholar 

  • Anderson, N. C., Ramon, F., and Snyder, A. 1971. Studies on calcium and sodium in uterine smooth muscle excitation under current-clamp and voltage-clamp conditions. J. Gen. Physiol., 58:322–339.

    Article  PubMed  CAS  Google Scholar 

  • Beeler, G. W. and Reuter, H. 1970a. Voltage clamp experiments on ventricular myocardial fibres. J. Physiol., 207:165–190.

    PubMed  Google Scholar 

  • Beeler, G. W. and Reuter, H. 1970b. Membrane calcium current in ventricular myocardial fibres. J. Physiol., 207: 191–209.

    PubMed  CAS  Google Scholar 

  • Brading, A., Bülbring, E., and Tomita, T. 1969. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 200:637–654.

    PubMed  CAS  Google Scholar 

  • Brown, H. F. and Noble, S. J. 1969. Membrane currents underlying delayed rectification and pace-maker activity in frog atrial muscle. J. Physiol., 204:717–736.

    PubMed  CAS  Google Scholar 

  • Cole, K. S. 1949. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol., 3:253–258.

    CAS  Google Scholar 

  • Cole, K. S. 1961. An analysis of the membrane potential along a clamped squid axon. Biophys. J., 1:401–418.

    Article  PubMed  CAS  Google Scholar 

  • Cole, K. S. and Moore, J. W. 1960. Ionic current measurements in the squid giant axon membrane. J. Gen. Physiol, 44:123–167.

    Article  PubMed  CAS  Google Scholar 

  • Deck, K. A., Kern, R. and Trautwein, W. 1964. Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch., 280.50–62.

    Article  CAS  Google Scholar 

  • Dodge, F. A. and Frankenhaeuser, B. 1958. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol., 143:76–90.

    PubMed  CAS  Google Scholar 

  • Dudel, J. and Rüdel, R. 1970. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflügers Arch., 315:136–158.

    Article  PubMed  CAS  Google Scholar 

  • Giebisch, G. and Weidmann, S. 1971. Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J. Gen. Physiol., 57:290–296.

    Article  PubMed  CAS  Google Scholar 

  • Goto, M., Kimoto, Y., and Kato, Y. 1971. A study on the excitation-contraction coupling of the bullfrog ventricle with voltage clamp technique. Jap. J. Physiol., 21:159–173.

    Article  CAS  Google Scholar 

  • Haas, H. G., Kern, R., and Einwächter, H. M. 1970. Electrical activity and metabolism in cardiac tissue. An experimental and theoretical study. J. Membrane Biol., 3:180–209.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116:449–412.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. 1952b. The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116:413–496.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. 1952c. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol, 116:497–506.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. 1952d. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 117:500–544.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., and Katz, B. 1949. Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol, 3:129–150.

    CAS  Google Scholar 

  • Johnson, E. A. and Lieberman, M. 1971. Heart: excitation and contraction. Ann. Rev. Physiol., 33:479–532.

    Article  CAS  Google Scholar 

  • Kao, C. Y. 1971. Some new leads into the physiology of mammalian smooth muscles. In: Research in Physiology, pp. 365–372. Ed. by Kao, F. F., Koisumi, K. and Vassalle, M. Aulo Gaggi, Bologna, Italy.

    Google Scholar 

  • Kumamoto, M. and Horn, L. 1970. Voltage clamping of smooth muscle from taenia coli. Microvasc. Res., 2:188–201.

    Article  PubMed  CAS  Google Scholar 

  • Mascher, D. and Peper, K. 1969. Two components of inward current in myocardial muscle fibers. Pflügers Arch.,307:190–203.

    Article  PubMed  CAS  Google Scholar 

  • Morad, M. and Orkland, R. K. 1971. Excitation-contraction coupling in frog ventricle: Evidence from voltage clamp studies. J. Physiol., 219:167–189.

    PubMed  CAS  Google Scholar 

  • Morad, M. and Trautwein, W. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflügers Arch., 299:66–82.

    Article  CAS  Google Scholar 

  • Rougier, O., Vassort, G., and Stämpfli, R. 1968. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch., 301:91–108.

    Article  CAS  Google Scholar 

  • Tarr, M. 1971. Two inward currents in frog atrial muscle. J. Gen. Physiol., 55:532–543.

    Google Scholar 

  • Tarr, M. and Trank, J. 1971. Equivalent circuit of frog atrial tissue as determined by voltage clamp-unclamp experiments. J. Gen. Physiol., 58:511–522.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I. and Bak, A. 1958. Current-voltage relations of single nodes of Ranvier as examined by voltage-clamp technique. J. Neurophysiol., 21:124–137.

    PubMed  CAS  Google Scholar 

  • Vassort, G. and Rougier, O. 1972. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflügers Arch., 331:191–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Coburn, R.F., Ohba, M., Tomita, T. (1975). Recording of Intracellular Electrical Activity with the Voltage-Clamp Technique with Double Sucrose Gap. In: Daniel, E.E., Paton, D.M. (eds) Smooth Muscle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2751-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2751-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2753-0

  • Online ISBN: 978-1-4684-2751-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics