Skip to main content

Abstract

In the discussions in the preceding chapters, the following facts have been pointed out:

  1. 1.

    Stretch receptors and osmotic receptors signal the central nervous system to set in motion neural and humoral mechanisms to maintain constant volume and constant pressure in the extracellular fluid spaces.

  2. 2.

    Bicarbonate and pH levels are maintained constant. Change in these levels results in stimulation of the central nervous system, setting in motion mechanisms for their readjustment.

  3. 3.

    Blood pressure and metabolic rate, which in turn affect body temperature, are also under central nervous system control.

  4. 4.

    Function of individual organs, like the liver, kidney, and sweat glands, is also directly and indirectly controlled by the central nervous system tied to the composition and volume of the body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading-Maintenance of Constant ion Concentration in Body Fluids: Sodium, Potassium, and Chloride

  • Cort, J. Electrolytes, Fluid Dynamics and the Nervous System. Academic Press, New York (1966).

    Google Scholar 

  • Black, D. A., Essentials of Fluid Balance, 4th ed., Blackwell Davis, Philadelphia, Pennsylvania (1968).

    Google Scholar 

  • Roberts, K. E., Parker, V. J., and Poppell, J. W., Electrolyte Changes in Surge,,, Charles C Thomas, Springfield, Illinois (1958).

    Google Scholar 

  • Shoemaker, W. D. and Walker, W. F., Fluid—Electrolyte Therapy in Acute Illness, Year Book, Chicago, Illinois (1970).

    Google Scholar 

  • Carlson, F. D., Physiological and Biochemical Aspects of Nervous Integration, Prentice Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  • Surawicz, B., Potassium and the Heart, Lea & Febiger, Philadelphia, Pennsylvania (1969).

    Google Scholar 

  • Berliner, R. W. et al., Physiology society symposium on neural control of body salt and water, Fed. Proc. 72: 1127–1159 (1968).

    Google Scholar 

  • Stein, W. D. The Movement of Molecules across Cell Membranes. Academic Press, New York (1967).

    Google Scholar 

  • Hoken, L. E., Ed., Metabolic Transport, Academic Press, New York (1972).

    Google Scholar 

  • Soffer, A., Ed., Potassium Therapy, Charles C Thomas, Springfield, Illinois (1968).

    Google Scholar 

References

  1. Pitts, R. F. Physiology of the Kidney and Body Fluids, 2nd ed., Year Book, Chicago, Illinois (1968).

    Google Scholar 

  2. Bajusz, E., Ed., Electrolytes and Cardiovascular Disease, Williams and Wilkins, Baltimore, Maryland (1965).

    Google Scholar 

  3. Maren, T. H., The relation between enzyme inhibition and physiological response in the carbonic anhydrase system, J. Pharmacol. Exp. Ther. 139: 140–153 (1963).

    Google Scholar 

  4. Clapp, J. R., Watson, J. F., and Berliner, R. W., Effect of carbonic anhydrase inhibition on proximal tubule bicarbonate reabsorption, Am. J. Physiol. 205: 693–696 (1963).

    Google Scholar 

  5. Rector, F. C., Jr., Seldin, D. W., Roberts, A. D., Jr., and Smith, J. S., The role of plasma CO2 tension and carbonic anhydrase activity in the renal re-absorption of bicarbonate, J. Clin. Invest. 39: 1706–1721 (1960).

    Article  Google Scholar 

  6. Rawls, Jr. J. A., Wistrand, P. J., and Maren, T. H., Affects of acid-base changes and carbonic anhydrase inhibition on pancreatic secretion, Am. J. Physiol. 205: 651–657 (1963).

    Google Scholar 

  7. Gibbs, G. E., Reimer, K., Kollmorgen, R. L., and Young, P. G., Quantitative microdetermination of enzymes in sweat glands, Am. J. Dis. Child. 105: 249252 (1963).

    Google Scholar 

  8. Bledsoe, T., Island, D. P., and Liddle, G. W., Studies of the mechanisms through which sodium depletion increases aldosterone biosynthesis in man, J. Clin. Invest. 45: 524–530 (1966).

    Article  Google Scholar 

  9. Gross, F., Regulation of aldosterone secretion by the renin-angiotensin system under various conditions, Acta Endocrinal. Suppl. 124: 41–64 (1967).

    Google Scholar 

  10. Farrell, G., Regulation of aldosterone secretion, Physiol. Rev. 38: 709–728 (1958).

    Google Scholar 

  11. Conn, J. W., Evolution of primary aldosteronism as a highly specific clinical entity, J. Am. Med. Assoc. 172: 1650–1653 (1960).

    Article  Google Scholar 

  12. Ganong, W. F., The central nervous system and the release of the adrenocorticotropic hormone, in Advances in Neuroendocrinology, Univ. of Illinois Press, Urbana, Illinois (1963), p. 92.

    Google Scholar 

  13. Dorfman, R. I. and Ungar, F., Metabolism of steroid hormones, Academic Press, New York (1965).

    Google Scholar 

  14. Hvidberg, E., Szporny, L. and Langgaard, H., The composition of aedema fluid provoked in mice by oestradiol, Acta Pharmacol. 20: 243–252 (1963).

    Article  Google Scholar 

  15. Bing, J. and Kazimierczak, J., Localization of renin in the kidney. III. Acta Pathol. Microbiol. Scand. 50: 1–11 (1960).

    Article  Google Scholar 

  16. Luetscher, J. A., Boyers, D. G., Cuthbertson, J. G., and McMahon, D. F., A model of the human circulation. Regulation by autonomic nervous system and renin-angiotensin system and influence of blood volume on cardiac output and blood pressure. Circulation Res. 32: Suppl. 1: 84–98 (1973).

    Google Scholar 

  17. Gunnells, J. C. Jr., Grim, C. E., Robinson, R. R., and Wildermann, N. M., Plasma renin activity in healthy subjects and patients with hypertension, Arch. Intern. Med. 119: 232–40 (1967).

    Google Scholar 

  18. Pabst, K., Renal excretory function following rapid infusion with solutions containing, and free of, sodium chloride, Arch. Ges. Physiol. 273: 315–24 (1961).

    Article  Google Scholar 

  19. Bergstrom, W. H. and Wallace, W. M., Bone as a sodium and potassium reservoir, J. Clin. Invest. 33:867–873 (1954); The participation of bone in the total body sodium metabolism in the rat, J. Clin. Invest. 34: 997–1004 (1955).

    Google Scholar 

  20. Bauer, G. C. H. and Carlsson, A., Rate of bone salt formation in a healing fracture determined in rats by means of radiophosphorus, Acta Orthopaed. Scand. 24: 27–34 (1955).

    Google Scholar 

  21. Forbes, G. B., Bone sodium and sodium-22 exchange: Relation to water content, Proc. Soc. Exp. Biol. Med. 102: 248–50 (1959).

    Google Scholar 

  22. MacCarty, C. S. and Cooper, I. S., Neurologic and metabolic effects of bilateral ligation of the anterior cerebral arteries in man, Proc. Staff. Meet., Mayo Clinic 26: 185–190 (1951).

    Google Scholar 

  23. Cooper, I. S., and MacCarthy, C. S., Unusual electrolyte abnormalities associated with cerebral lesions, Proc. Staff Meet. Mayo Clinic 26: 354–358 (1951).

    Google Scholar 

  24. Natelson, S., Crawford, W. L., and Munsey, F. A., in Correlation of Clinical and Chemical Observations in the Immature Infant, Illinois Dept. of Public Health, Div. of Preventive Medicine Publication (1952), p. 16.

    Google Scholar 

  25. Engstrom, W. W. and Liebman, A., Chronic hyperosmolarity of the body fluids with a cerebral lesion causing diabetes insipidus and anterior pituitary insufficiency, Am. J. Med. 15: 180–186 (1953).

    Article  Google Scholar 

  26. Vajjajiva, A., Sitprija, V., and Shuangshoti, S., Chronic sustained hypernatremia and hypovolemia in hypothalamic tumor. A physiologic study, Neurology 19: 161–166 (1969).

    Article  Google Scholar 

  27. Natelson, S. and Alexander, M. O., Marked hypernatremia and hyperchloremia with damage to the central nervous system, Arch. Intern. Med. 96: 172–175 (1955).

    Google Scholar 

  28. Goodale, W. T. and Kinney, T. D., Sulfadiazine nephrosis with hyperchloremia and encephalopathy, Ann. Intern. Med. 31: 1118–1128 (1949).

    Google Scholar 

  29. Allott, E. N., Hypernatremia and hyperchloremia in bulbar poliomyelitis, Lancet 1: 246–250 (1957).

    Article  Google Scholar 

  30. Sweet, W. H., Cotzias, G. C., Seed, J., and Yakovlev, P. I., Gastrointestinal hemorrhages, hyperglycemia, azotemia, hyperchloremia and hypernatremia following lesions of frontal lobe in man, Ann. Res. Nerv. Ment. Dis. Proc. 27: 795–822 (1948).

    Google Scholar 

  31. Daily, W. J. R. and Victorin, J. L. H., Hyperosmolarity (hypernatremia) with cerebral disease. A report of two cases in children, Acta Paediat. Scand. 56: 97–104 (1967).

    Google Scholar 

  32. Taylor, W. H., Hypernatraemia in cerebral disorders, J. Clin. Pathol. 15: 211220 (1962).

    Google Scholar 

  33. Christie, S. B. M., and Ross, E. J., Ectopic pinealoma with adipsea and hypernatraemia, Brit. Med. J. 2, 699–670 (1968).

    Google Scholar 

  34. Allott, E. N., Sodium and chloride retention without renal disease, Lancet 1: 1035–1037 (1939).

    Article  Google Scholar 

  35. Pleasure, D. and Goldberg, M., Neurogenic hypernatremia, Arch. Neurol. 15: 78–87 (1966).

    Google Scholar 

  36. Alvioli, L. V., Earley, L. E., and Kashima, H. K., Chronic and sustained hypernatremia. Absence of thirst, diabetes insipidus and ACTH insufficiency resulting from widespread destruction of the hypothalamus, Ann. Intern. Med. 56: 131–140 (1962).

    Google Scholar 

  37. Mahoney, J. H. and Goodman, D., Hypernatremia due to hypodypsia and elevated threshold for vasopressin release. Effects of treatment with hydrochlorothiazide, chlorpropamide and tolbutamide, New Eng. J. Med. 279: 1191–1196 (1968).

    Google Scholar 

  38. Lewy, F. H. and Gassmann, F. K., Experiments on the hypothalamic nuclei in the regulation of chloride and sugar metabolism, Am. J. Physiol. 112: 504510 (1935).

    Google Scholar 

  39. Schoolman, H. M., Dubin, A., and Hoffman, W. S., Clinical syndromes associated with hypernatremia, Arch. Intern. Med. 95: 15–23 (1955).

    Google Scholar 

  40. Montgomery, R, Clinical conference at the Los Angeles Children’s Hospital, Case 2, hyperelectrolytemia and hyperosmolarity in an infant, J. Pediat. 42: 742–748 (1953).

    Article  Google Scholar 

  41. Goldberg, M. and Handler, J. S., Hyponatremia and renal wasting of sodium in patients with malfunction of the central nervous system, New Eng. J. Med. 263: 1037–1043 (1960).

    Article  Google Scholar 

  42. Peters, J. P., Welt, L. G., Sims, E. A. H., Orloff, J., and Needham, J. W., Salt wasting syndrome associated with cerebral disease, Trans. Ass. Am. Physicians 63: 57–64 (1951).

    Google Scholar 

  43. Carter, N. W., Rector, F. C., Jr., and Seldins, D. W., Hyponatremia in cerebral disease resulting from the inappropriate secretion of the antidiuretic hormone, New Eng. J. Med. 264: 67–72 (1961).

    Article  Google Scholar 

  44. Pincus, J. B., Gittleman, I. F., Saito, M., and Sobel, A. F., A study of plasma values of sodium, potassium, chloride, carbon dioxide tension, carbon dioxide, sugar, urea, and the protein base-binding power, pH and hematocrit on the first day of life, Pediatrics 18: 39–49 (1956).

    Google Scholar 

  45. Clapp, J. R. and Rector, F. C., The mechanism of renal chloride reabsorption, Clin. Res. 9: 56 (1961).

    Google Scholar 

  46. Natelson, S., Chronic alkalosis with damage to the central nervous system, Clin. Chem. 4: 32–42 (1958).

    Google Scholar 

  47. Rowntree, L. G. Boucek, R. J., and Noble, N. L., Anomalous type of salt and water retention with persistent edema, J. Am. Med. Assoc. 161: 877–879 (1956).

    Article  Google Scholar 

  48. Deane, N. and Smith, H. W., The distribution of sodium and potassium in man, J. Clin. Invest. 31: 197–199 (1952).

    Article  Google Scholar 

  49. Beilin, L. J., Knight, G. J., Munroe-Faure, A. D., and Anderson, J., The sodium, potassium and water contents of healthy human adults, J. Clin. Invest. 45: 1817–1825 (1966).

    Article  Google Scholar 

  50. Katz, A. I. and Epstein, F. H., The role of sodium-potassium activated adenosine triphosphatase in the reabsorption of sodium in the kidney, J. Clin. Invest. 46: 1999–2011 (1967).

    Article  Google Scholar 

  51. Kintner, E. P., Chemical structure of erythrocytes with emphasis on Donnan equilibrium, Ann. Clin. Lab. Sci. 2: 326–334 (1972).

    Google Scholar 

  52. Ussing, H. H., The distinction by means of tracers, between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19: 43–56 (1949).

    Article  Google Scholar 

  53. Boyle, P. J. and Conway, E. J., Potassium accumulation in muscle and associated changes, J. Physiol. 100: 1–63 (1941).

    Google Scholar 

  54. Ussing, H. H., Transport of ions across cellular membranes, Physiol. Rev. 29: 127–155 (1949).

    Google Scholar 

  55. Ling, G., Muscle electrolytes, Am. J. Phys. Med. 34: 89–101 (1955).

    Google Scholar 

  56. Ling, G. N. and Cope, F. W., Potassium ion: Is the bulk of intracelluar K+ adsorbed? Science 163: 1335–1336 (1969).

    Article  Google Scholar 

  57. Fenn, W. O., Deposition of potassium and phosphate with glycogen in rat livers, J. Biol. Chem. 128: 297–307 (1939).

    Google Scholar 

  58. Altman, P. L. and Dittmer, D. S., Eds., Membrane Transport of Nutrients, Classification of Transport Processes in Metabolism, Fed. Am. Soc. for Exp. Biology, Bethesda, Maryland (1968).

    Google Scholar 

  59. Post, R. L., Merritt, C. R., Kinsolving, C. R., and Albright, C. D., Membrane adenosine triphosphatase as a participant in the active transport of Na and K in the human erythrocyte, J. Biol. Chem. 235: 1796–1802 (1960).

    Google Scholar 

  60. Perrone, J. R. and Blostein, R., Asymmetric interaction of inside out and right side out erythrocyte membrane vesicles with ouabain, Biochim. Biophys. Acta 291: 680–689 (1973).

    Article  Google Scholar 

  61. Whittam, R., Control of membrane permeability to potassium in red cells, Nature 219: 610 (1968).

    Article  Google Scholar 

  62. Garrahan, P. J. and Glynn, I. M., Driving the sodium pump backwards to form adenosine triphosphate, Nature 211: 1414–1415 (1966).

    Article  Google Scholar 

  63. Shelburne, J. D. and Trump, B. F., Disorders of cell volume regulation. I. Effects of inhibition of plasma membrane adenosine triphosphatase with ouabain, Am. J. Pathol. 53: 1041–1071 (1968).

    Google Scholar 

  64. Whittam, R. and Ager, M., Dual effects of sodium ions on membrane adenosine triphosphatase, Biochim. (1962).

    Google Scholar 

  65. Glynn, I. M., Relation between ouabain-sensitive potassium efflux hypothetical dephosphorylation step in transport ATPase system, J. Physiol. 51: 385–388 (1968).

    Google Scholar 

  66. Potter, H. A., Charnock, J. S., and Opit, L. J., The separation of sodium and potassium-activated adenosine-triphosphate from a sodium or potassium

    Google Scholar 

  67. inhibited adenosine triphosphatase of cardiac muscle, Austral. J. Exp. Biol. Med. Sci. 44: 503–518 (1966).

    Google Scholar 

  68. Opit, L. J. and Chamock, J. S., A molecular model for a sodium pump, Nature 209: 471–474 (1965).

    Article  Google Scholar 

  69. Asukuta, T., Sato, Y., Minikami, S., and Yoshikawa, H., pH dependency of 2,3 diphosphoglycerate content in red blood cells, Clin. Chim. Acta 14: 840841 (1966).

    Google Scholar 

  70. Mezumo, N., Nagano, K, Nakao, T., and Tashima, Y., Approximation of molecular weight of Na+-K+-ATPase, Biochim. Biophys. Acta 168: 311–320 (1968).

    Google Scholar 

  71. Post, R. L., Kume S., Tobin, T., Orcutt, B., and Sen, A. K., Flexibility of an active center in sodium plus potassium adenosine triphosphatase, J. Gen. Physiol. 54:306.-326. (1969).

    Google Scholar 

  72. Post, R. L., Kume, S., and Rogers, R. N., in Mechanism in Bioenergetics, Azzone, G. F., Ed., Academic Press, New York (1973).

    Google Scholar 

  73. Barry, R. J. C., Electrical changes in relation to transport, Brit. Med. Bull. 23: 266–269, (1967).

    Google Scholar 

  74. Fujita, M., Ota, H., Kawai, K., Matsui, H., and Nakao, M., Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa; mutually exclusive distribution of digestive enzymes and ouabain sensitive ATPase, Biochin. Biophys. Acta 274:336–347 (1972); J. Physiol. 227: 377 (1972).

    Google Scholar 

  75. Blostein, R., Sodium activated adenosine triphosphatase activity of the erythrocyte membrane, J. Biol. Chem. 245: 270–275 (1970).

    Google Scholar 

  76. Chen, R. F., Familial periodic paralysis. Report of a case resistant to dextrose and insulin provocation, Arch. Neurol. 1: 475–484 (1959).

    Google Scholar 

  77. French, E. B. and Kilpatrick, R., A variety of paramyotonia congenita, J. Neurol. Neurosurg. Psychiat. 20: 40–46 (1957).

    Article  Google Scholar 

  78. Layzer, R. B., Lovelace, R. E., and Rowland, L. P., Hyperkalemic periodic paralysis, Arch. Neurol. 16: 455–472 (1967).

    Google Scholar 

  79. Gamstorp, I., Hauge, M., Helweg-Larsen, H. F., Mjones, H., and Sagild, U. Adynamia episodica hereditaria, Am. J. Med. 23: 385–390 (1957).

    Article  Google Scholar 

  80. McFadzean, A. J. S. and Yeung, R. Periodic paralysis complicating thyrotoxicosis in Chinese, Brit. Med. J. 1: 451–455 (1967)

    Article  Google Scholar 

  81. Poskanzer, D. C. and Kerr, D. N. S., A third type of periodic paralysis with normokalemia and favorable response to sodium chloride, Am. J. Med. 31: 328–342 (1961).

    Article  Google Scholar 

  82. Tyler, F. H., Stephens, F. E., Gunn, F. D., and Perkoff, G. T., Studies in disorder of muscles. VII Clinical manifestations and inheritance of a type of periodic paralysis without hypopotassemia, J. Clin. Invest. 30: 492–502 (1951).

    Article  Google Scholar 

  83. Braun, H. A., Surawicz, B., and Bellet, S., T waves in hyperpotassemia, their differentiation from simulating T waves in other conditions, Am. J. Med. Sci. 230: 147–156 (1955).

    Article  Google Scholar 

  84. Samaha, F. J., Von Eulenberg’s paramyotonia, Trans. Am. Neurol. Assoc. 89: 87–91 (1964).

    Google Scholar 

  85. Bellet, S., Steiger, W. A., Nadler, C. S., and Gazes, P. C., Electrocardiographic patterns in hypopotassemia; observations on 79 patients, Am. J. Med. Sci. 219: 542–558 (1950).

    Article  Google Scholar 

  86. Evans, B. M. and Milne, M. D., Potassium-losing nephritis presented as a case of periodic paralysis, Brit. Med. J. 2: 1067–1071 (1954).

    Article  Google Scholar 

  87. Kartal, J. P., Leve, L., Ryder, H. W., and Horowitz, M. G., Renal tubular acidosis with hypokalemia symptoms, Arch. Intern. Med. 107: 743–749 (1961).

    Google Scholar 

  88. Giebisch, G., Windhager, E. E., and Malnic, G., Renal control of sodium and potassium of body fluids, in 23rd Int. Congr. Physiol. Soc. Lect. Symp. Tokyo (1965), pp. 167–75

    Google Scholar 

  89. Christy, N. P. and Laragh, J. H., Pathogenesis of hypokalemic alkalosis in Cushing’s syndrome, New Eng. J. Med. 265: 1083–1088 (1961).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Natelson, S., Natelson, E.A. (1975). Maintenance of Constant Ion Concentration in Body Fluids: Sodium, Potassium, and Chloride. In: Principles of Applied Clinical Chemistry Chemical Background and Medical Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2745-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2745-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2747-9

  • Online ISBN: 978-1-4684-2745-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics