Skip to main content

Cell Proliferation Kinetics and Radiation Therapy

  • Chapter
Radiotherapy, Surgery, and Immunotherapy

Part of the book series: Cancer ((C,volume 6))

Abstract

Radiation can perturb the cell proliferation kinetics of a population, and the cell kinetics can itself influence the response of the cell population to any further dose of radiation. These mutual interactions are of importance in the response of tumors and normal tissues to fractionated irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper, T., and Gillies, N. E., 1958, “Restoration” of Escherichia coli strain B after irradiation: Its dependence on suboptimal growth conditions, J. Gen. Microbiol. 18:461.

    PubMed  CAS  Google Scholar 

  • Alper, T., and Howard-Flanders, P., 1956, The role of oxygen in modifying the radiosensitivity of E. coli B, Nature (London) 178:978.

    Article  CAS  Google Scholar 

  • Begg, A. C., 1971, Kinetic and histological changes of a serially transplanted mouse tumour, Cell Tissue Kinet. 4:401.

    PubMed  CAS  Google Scholar 

  • Begg, A. C., 1975, Ph.D. thesis, London.

    Google Scholar 

  • Begg, A. C., 1977, Cell loss from several types of murine solid tumour, measured in situ using 125I-iodo-deoxyuridine or tritiated thymidine, Radiat. Res. 69 (in press).

    Google Scholar 

  • Bennington, T. C., 1969, Cellular kinetics of invasive squamous carcinoma of the human cervix, Cancer Res. 29:1082.

    PubMed  CAS  Google Scholar 

  • Bresciani, F., 1965, A comparison of the cell generative cycle in normal, hyperplastic and neoplastic mammary gland of the C3H mouse, in: Cellular Radiation Biology, pp. 547–557, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Bresciani, F., and Nervi, C., 1976, Growth kinetics in human squamous carcinoma, in: Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells, Proceedings of the 29th Annual Symposium on Fundamental Cancer Research, Houston, in press.

    Google Scholar 

  • Bresciani, F., Paoluzi, R., Benassi, M., Nervi, C., Casale, V., and Ziparo, E., 1974, Cell kinetics and growth in squamous cell carcinomas in man, Cancer Res. 34:2405.

    PubMed  CAS  Google Scholar 

  • Brown, J. M., 1970, The effect of acute X-irradiation on the cell proliferation kinetics of induced carcinomas and their normal counterpart, Radiat. Res. 43:627.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, I. L., 1970, Cell renewal in the organs and tissues of the non-growing adult mouse, Tex. Rep. Biol. Med. 28:203.

    PubMed  CAS  Google Scholar 

  • Catterall, M., Sutherland, I., and Bewley, D. K., 1975, First results of a randomised clinical trial of fast neutrons compared with X- or gamma rays in treatment of advanced tumours of the head and neck, Br. Med. J., p. 653.

    Google Scholar 

  • Charbit, A., Malaise, E. P., and Tubiana, M., 1971, Relation between the pathological nature and the growth rate of human tumors, Eur. J. Cancer 7:307.

    PubMed  CAS  Google Scholar 

  • Chen, K. Y., and Withers, H. R., 1972, Survival characteristics of stem cells of gastric mucosa in C3H mice exposed to local gamma irradiation, Int. J. Radiat. Biol. 21:521.

    Article  CAS  Google Scholar 

  • Clifton, K. H., and Briggs, R. C., 1966, Quantitative radiosensitivity studies of solid carcinomas in vivo: Methodology and effect of anoxia, J. Natl. Cancer Inst. 36:965.

    Google Scholar 

  • Clifton, K. H., and Jirtle, R., 1975, Mammary carcinoma cell population growth in pre-irradiated and unirradiated transplant sites, Radiology 117:459.

    PubMed  CAS  Google Scholar 

  • Collins, V. P., Loeffler, R. K., and Tivey, H., 1956, Observations on growth rates of human tumours, Am. J. Roentgenol. 76:988.

    CAS  Google Scholar 

  • Denekamp, J., 1970, The cellular proliferation kinetics of animal tumours, Cancer Res. 30:303.

    Google Scholar 

  • Denekamp, J., 1972, The relationship between the “cell loss factor” and the immediate response to radiation in animal tumours, Eur. J. Cancer 8:335.

    PubMed  CAS  Google Scholar 

  • Denekamp, J., 1973, Changes in the rate of repopulation during multifraction irradiation of mouse skin, Br. J. Radiol. 46:381.

    Article  PubMed  CAS  Google Scholar 

  • Denekamp, J., 1975, Changes in the rate of proliferation in normal tissues after irradiation, in: Radiation Research: Biomedical, Chemical and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 810–825, Academic Press, New York.

    Google Scholar 

  • Denekamp, J., and Harris, S. R., 1976, Studies of the processes occurring between two fractions in experimental mouse tumours, Int. J. Radiat. Oncol. Biol. Phys. 1:421.

    Article  PubMed  CAS  Google Scholar 

  • Denekamp, J., and Kallman, R. F., 1973, In vitro and in vivo labelling of animal tumours with tritiated thymidine, Cell Tissue Kinet. 6:217.

    PubMed  CAS  Google Scholar 

  • Denekamp, J., and Thomlinson, R. H., 1971, The cell proliferation kinetics of four experimental tumours after acute X-irradiation, Cancer Res. 31:1279.

    PubMed  CAS  Google Scholar 

  • Denekamp, J., Ball, M. M., and Fowler, J. F., 1969, Recovery and repopulation in mouse skin as a function of time after X-irradiation, Radiat. Res. 37:361.

    Article  PubMed  CAS  Google Scholar 

  • Denekamp, J., Stewart, F. A., and Douglas, B. G., 1976, Changes in the prpliferation rate in mouse skin after irradiation: Continuous labelling studies, Cell Tissue Kinet. 9:19.

    PubMed  CAS  Google Scholar 

  • Deschner, E. E., and Gray, L. H., 1959, Influence of oxygen tension on X-ray induced chromosomal damage in Ehrlich ascites tumour cells irradiated in vitro and in vivo, Radiat. Res. 11:115.

    Article  PubMed  CAS  Google Scholar 

  • Dethlefson, L. A., 1971, An evaluation of radio iodine-labelled 5-iodo-2-deoxyuridine as a tracer for measuring cell loss from solid tumours, Cell Tissue Kinet. 4:123.

    Google Scholar 

  • Dische, S., 1974, The hyperbaric oxygen chamber in the radiotherapy of carcinoma of the uterine cervix, Br. J. Radiol. 47:99.

    Article  PubMed  CAS  Google Scholar 

  • Doida, Y., and Okada, S., 1969, Radiation induced mitotic delay in cultured mammalian cells L5178Y, Radiat. Res. 38:513.

    Article  PubMed  CAS  Google Scholar 

  • Dombernowsky, P., and Hartmann, N. R., 1972, Analysis of variations in the cell population kinetics with tumour age in the L1210 ascites tumour, Cancer Res. 32:2452.

    PubMed  CAS  Google Scholar 

  • Dormer, P., Tulinius, H., and Oehlert, W., 1964, Untersuchungen über die Generationszeit, DNA Synthesezeit und Mitosedauer von Zellen der hyperplastischen Epidermis und des Plattenepithel-carcinomas der Maus nach MCA, Z. Krebsforsch. 66:11.

    Article  Google Scholar 

  • Durand, R. E., and Sutherland, R. M., 1972, Effects of intercellular contact on repair of radiation damage, Exp. Cell Res. 71:75.

    Article  PubMed  CAS  Google Scholar 

  • Elkind, M. M., and Sutton, H., 1959, X-ray damage and recovery in mammalian cells in culture, Nature (London) 184:1293.

    Article  CAS  Google Scholar 

  • Elkind, M. M., Han, A., and Volz, K. W., 1963, Radiation response of mammalian cells grown in culture. IV. Dose dependence of division delay and postirradiation growth of surviving and non-surviving Chinese hamster cells, J. Natl. Cancer Inst. 30:705.

    Google Scholar 

  • Ellis, F., 1969, Dose, time and fractionation, a clinical hypothesis, Clin. Radiol 20:1.

    Article  PubMed  CAS  Google Scholar 

  • Emery, E. W., Denekamp, J., Ball, M. M., and Field, S. B., 1970, Survival of mouse skin epithelial cells following single and divided doses of X-rays, Radiat. Res. 41:450.

    Article  PubMed  CAS  Google Scholar 

  • Etoh, H., Taguchi, Y. H., and Tabachnick, J., 1975, Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division, J. Invest. Dermatol. 64:431.

    Article  PubMed  CAS  Google Scholar 

  • Field, S. B., Morris, C., Denekamp, J., and Fowler, J. F., 1975, The response of mouse skin to fractionated x-rays, Eur. J. Cancer 11:191.

    Google Scholar 

  • Field, S. B., Hornsey, S., and Kutsutani, Y., 1976, Effects of fractionated irradiation on mouse lung: A phenomenon of slow repair, Br. J. Radiol. 49:700.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., 1974, Tumor angiogenesis factor, Cancer Res. 34:2109.

    PubMed  CAS  Google Scholar 

  • Fowler, J. F., and Denekamp, J., 1976, Regulation of epidermal stem cells, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 117–134, Academic Press, New York.

    Google Scholar 

  • Fowler, J. F., Lindop, P. J., Berry, R. J., Kragt, K., and Ellis, R. E., 1965, Split dose experiments on skin reactions in mice, Int. J. Radiat. Biol. 9:241.

    Article  Google Scholar 

  • Fowler, J. F., Sheldon, P. W., Begg, A. C., Hill, S. A., and Smith, A. M., 1975, Biological properties and response to X-rays of first generation transplants of spontaneous mammary carcinomas in C3H mice, Int. J. Radiat. Biol. 27:463.

    Article  CAS  Google Scholar 

  • Frankfurt, O. S., 1967a, Mitotic cycle and cell differentiation in squamous cell carcinomas, Int. J. Cancer 2:304.

    Article  PubMed  CAS  Google Scholar 

  • Frankfurt, O. S., 19676, Cell proliferation and differentiation in the squamous epithelium of the forestomach of the mouse, Exp. Cell Res. 46:603.

    Google Scholar 

  • Frindel, E., Malaise, E. P., Alpen, E., and Tubiana, M., 1967, Kinetics of cell proliferation of an experimental tumour, Cancer Res. 27:1122.

    PubMed  CAS  Google Scholar 

  • Frindel, E., Vassort, F., and Tubiana, M., 1970, Effects of irradiation on the cell cycle of an experimental ascites tumour of the mouse, Int. J. Radiat. Biol. 17:329.

    Article  CAS  Google Scholar 

  • Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., and Scott, O. C. A., 1953, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Br. J. Radiol. 26:638.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, G. M., 1968a, Possible improvements in differential cell killing by cell cycle modulation, Br. J. Radiol. 41:239.

    Article  Google Scholar 

  • Hahn, G. M., 1968b, Failure of Chinese hamster cells to repair sublethal damage when x-irradiated in the plateau phase of growth, Nature (London) 217:741.

    Article  CAS  Google Scholar 

  • Hahn, G. M., 1975, Modification of cell killing by precise timing of x-irradiation, in: Proceedings of the Madison Conference on the Time-Dose Relationships in Clinical Radiotherapy (W. Caldwell and D. D. Tolbert, eds.), pp. 153–159, University of Wisconsin, Madison, Wis.

    Google Scholar 

  • Hahn, G. M., and Little, J. B., 1972, Plateau-phase cultures of mammalian cells: An in vitro model for human cancer, Curr. Top. Radiat. Res. Q. 8:39.

    PubMed  CAS  Google Scholar 

  • Hahn, G. M., Rockwell, S. C., Kallman, R. F., and Frindel, E., 1972, Repair of potentially lethal damage in tumour cells X-irradiated in vivo, Radiat. Res. 51:523.

    Google Scholar 

  • Hasegawa, K., Matsuura, Y., and Shimpei, T., 1976, Cellular kinetics and histological changes in experimental cancer of the uterine cervix, Cancer Res. 36:359.

    PubMed  CAS  Google Scholar 

  • Hegazy, M. A. H., and Fowler, J. F., 1973, Cell population kinetics and desquamation skin reactions in plucked and unplucked mouse skin. II. Irradiated skin, Cell Tissue Kinet. 6:587.

    PubMed  CAS  Google Scholar 

  • Henk, J. M., and Smith, C. W., 1973, Unequivocal clinical evidence for the oxygen effect, Br. J. Radiol. 46:146.

    Article  PubMed  CAS  Google Scholar 

  • Hermens, A. F., 1973, Variations in the cell kinetics and the growth rate in an experimental tumor during natural growth and after irradiation, Ph.D. thesis, Radiobiological Inst. T.N.O., Rijswijk, the Netherlands.

    Google Scholar 

  • Hermens, A. F., and Barendsen, G. W., 1967, Cellular proliferation patterns in an experimental rhabdomyosarcoma in the rat, Eur. J. Cancer 3:361.

    PubMed  CAS  Google Scholar 

  • Hermens, A. F., and Barendsen, G. W., 1969, Changes in cell proliferation characteristics in a rat rhabdomyosarcoma before and after X-irradiation, Eur. J. Cancer 5:173.

    PubMed  CAS  Google Scholar 

  • Hewitt, H. B., and Blake, E. R., 1968, The growth of transplanted murine tumours in pre-irradiated sites, Br. J. Cancer 22:808.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, H. B., and Wilson, C. W., 1961, Survival curves for tumor cells irradiated in vivo, Ann. N. Y. Acad. Sci. 95:818.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, H. B., Chan, D. P. S., Blake, E. R., 1967, Survival curves for clonogenic cells of a murine keratinising squamous carcinoma irradiated in vivo or under hypoxic conditions, Int. J. Radiat. Biol. 12:539.

    Article  Google Scholar 

  • Hewitt, H. B., Blake, E. R., and Wälder, A. S., 1976, A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin, Br. J. Cancer 33:241.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. P., and Bush, R. S., 1977, Repair and reoxygenation in a transplantable murine sarcoma, Radiat. Res. 70 (in press).

    Google Scholar 

  • Hill, R. P., Bush, R. S., and Yeung, P., 1971, The effect of anaemia on the fraction of hypoxic cells in an experimental tumour, Br. J. Radiol. 44:299.

    Article  PubMed  CAS  Google Scholar 

  • Howes, A. E., 1969, An estimation of changes in the proportion of hypoxic cells after irradiation of transplanted C3H mouse mammary tumours, Br. J. Radiol. 42:441.

    Article  PubMed  CAS  Google Scholar 

  • Iliya, F. A., and Azar, H. A., 1967, Radioautographic studies in neoplasia of uterine cervix, Am. J. Obstet. Gynecol. 99:515.

    PubMed  CAS  Google Scholar 

  • International Atomic Energy Agency Symposium at Monaco, 1968, Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.

    Google Scholar 

  • Kallman, R. F., 1972, The phenomenon of reoxygenation and its implications for fractionated radiotherapy, Radiology 105:135.

    PubMed  CAS  Google Scholar 

  • Kallman, R. F., Jardine, L. J., and Johnson, C. W., 1970, The effects of different schedules of dose fractionation on the oxygenation status of a transplantable mouse sarcoma, J. Natl. Cancer Inst. 44:369.

    PubMed  CAS  Google Scholar 

  • Kirk, J., Gray, W. M., and Watson, E. R., 1971, Cumulative radiation effect. 1. Fractionated treatment regimes, Clin. Radiol. 22:145.

    Article  PubMed  CAS  Google Scholar 

  • Laird, A. K., 1964, Dynamics of tumor growth, Br. J. Cancer 18:490.

    Article  Google Scholar 

  • Lajtha, L. G., and Oliver, R., 1962, Cell population kinetics following different regimes of irradiation, Br. J. Radiol. 35:131.

    Article  PubMed  CAS  Google Scholar 

  • Lala, P., 1968, Cytokinetic control mechanisms in Ehrlich ascites tumour growth, in: Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.

    Google Scholar 

  • Lamerton, L. F., 1966, Cell proliferation under continuous irradiation, Radiat. Res. 27:119.

    Article  CAS  Google Scholar 

  • Lesher, S., and Bauman, J., 1968, Recovery of reproductive activity and the maintenance of structural integrity in the mouse intestinal epithelium after single dose whole-body 60Co gamma ray exposures, in: Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.

    Google Scholar 

  • Lesher, S. and Bauman, J., 1969, Cell kinetic studies of the intestinal epithelium: Maintenance of the intestinal epithelium in normal and irradiated animals, Natl. Cancer Inst. Monogr. 30:185.

    PubMed  CAS  Google Scholar 

  • Lesher, S., Lamerton, L. F., Sacher, G. A., Fry, R. J. M., Steel, G. G., and Roylance, P. J., 1966, Effect of continuous gamma irradiation on the generation cycle of the duodenal crypt cells of the mouse and rat, Radiat. Res. 29:57.

    Article  PubMed  CAS  Google Scholar 

  • Lesher, S., Cooper, J., Hageman, R., and Lesher, J., 1975, Proliferative patterns in the mouse jejunal epithelium after fractionated abdominal X-irradiation, Curr. Top. Radiat. Res. Q. 10:229.

    PubMed  CAS  Google Scholar 

  • Little, J. B., Hahn, G. M., Frindel, E., and Tubiana, M., 1972, Repair of potentially lethal radiation damage in vitro and in vivo, Radiology 106:689.

    Google Scholar 

  • Lord, B. L, 1975, The control of cell proliferation in haemopoetic tissue, in: Radiation Research: Biomedical, Chemical, and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 826–833, Academic Press, New York.

    Google Scholar 

  • Lord, B. I., 1976, Stem cell reserve and its control, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 165–180, Academic Press, New York.

    Google Scholar 

  • Malaise, E. P., Charbit, A., Chavaudra, N., Combes, P. F., Douchez, J., and Tubiana, M., 1972, Change in volume of irradiated human metastases—investigation of repair of sublethal damage and tumour repopulation, Br. J. Cancer 26:43.

    Article  PubMed  CAS  Google Scholar 

  • Malaise, E. P., Chavaudra, N., and Tubiana, M., 1973, The relationship between growth rate, labelling index, and histological type of human solid tumours, Eur. J. Cancer 9:305.

    PubMed  CAS  Google Scholar 

  • Malaise, E. P., Chavaudra, N., Pêne, F., Richard, J. M., and Tubiana, M., 1975, Cell proliferation kinetics and growth rate of the irradiated human tumors, in: Radiation Research: Biomedical, Chemical, and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 850–856, Academic Press, New York.

    Google Scholar 

  • Mayneord, W. V., 1932, On a law of growth of Jensen’s rat sarcoma, Am. J. Cancer 16:841.

    Google Scholar 

  • McNally, N. J., 1975, The effect of an hypoxic cell sensitizer on tumour growth delay and cell survival: Implications for cell survival in situ and in vitro, Br. J. Cancer 32:610.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, M. L., 1965, The kinetics of tumor cell proliferation, in: Cellular Radiation Biology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Mottram, J. C., 1913, On the action of beta and gamma rays of radium on the cell in different states of nuclear division, Arch. Middlesex Hosp. 30:98.

    Google Scholar 

  • Mottram, J. C, Scott, G. M., and Russ, S., 1926, On the effects of beta rays from radium upon division and growth of cancer cells, Proc. R. Soc. London Ser. B 100:326.

    Article  CAS  Google Scholar 

  • Nelson, J. S. R., Carpenter, R. E., and Durboraw, D., 1976, Mechanisms underlying reduced growth rate in C3HBA mammary adeno-carcinomas recurring after single doses of X-rays or fast neutrons, Cancer Res. 36:524.

    PubMed  CAS  Google Scholar 

  • Phiillips, T. L., 1966, An ultrastructural study of the development of radiation injury in the lung, Radiology 87:49.

    Google Scholar 

  • Phillips, T. L., 1969, Observations on heart, lung and kidney after 500–4500 rads from 1 hour to 1 year, in: Carmel Conference on Time-Dose Relationships in Radiation Biology as Applied to Radiotherapy, pp. 194–199, BNL 50203 (C-57).

    Google Scholar 

  • Porschen, W., and Feinendegen, L. E., 1971, In vivo determination of RBE factors of 15 MeV neutrons for different biological effects in normal tissues and sarcoma 180, using cell labelling with 125IUdR, in: Radiobiological Applications of Neutron Irradiation, pp. 121–134, IAEA, Vienna.

    Google Scholar 

  • Powers, W. E., and Tolmach, L. J., 1963, A multicomponent X-ray survival curve for mouse lymphoma cells irradiated in vivo, Nature (London) 197:710.

    Article  CAS  Google Scholar 

  • Rashad, A. L., and Evans, C. A., 1968, Radioautographic study of epidermal cell proliferation and migration in normal and neoplastic tissues of rabbits, J. Natl. Cancer Inst. 41:845.

    PubMed  CAS  Google Scholar 

  • Reinhold, H. S., 1966, Quantitative evaluation of the radiosensitivity of cells of a transplantable rhabdomyosarcoma in the rat, Eur. J. Cancer 2:33.

    PubMed  CAS  Google Scholar 

  • Reinhold, H. S., and Buisman, G. H., 1975, Repair of radiation damage to capillary endothelium, Br. J. Radiol. 48:727.

    Article  PubMed  CAS  Google Scholar 

  • Reiskin, A., and Mendelsohn, M. L., 1964, A comparison of the cell cycle in induced carcinoma and their normal counterpart, Cancer Res. 24:1131.

    PubMed  CAS  Google Scholar 

  • Shipley, W. U., Stanley, J. A., Courtenay, V. D., and Field, S. B., 1975, Repair of radiation damage in Lewis lung carcinoma cells following in situ treatment with fast neutrons and gamma rays, Cancer Res. 35:932.

    PubMed  CAS  Google Scholar 

  • Simpson-Herren, L., Sanford, A. H., and Holmqvist, J. P., 1974, Cell population kinetics of transplanted and metastatic Lewis lung carcinoma, Cell Tissue Kinet. 7:349.

    PubMed  CAS  Google Scholar 

  • Sinclair, W. K., 1968, Cyclic X-ray responses in mammalian cells in vitro, Radiat. Res. 33:620.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, W. K., and Morton, R. A., 1963, Variations in X-ray response during the division cycle of partially synchronised Chinese hamster cells in culture, Nature (London) 199:1158.

    Article  CAS  Google Scholar 

  • Steel, G. G., 1968, Cell loss from experimental tumours, Cell Tissue Kinet. 1:193.

    Google Scholar 

  • Steel, G. G., 1972, The cell cycle in tumours: An examination of data gained by the technique of labelled mitoses, Cell Tissue Kinet. 5:87.

    PubMed  CAS  Google Scholar 

  • Steel, G. G., and Lamerton, L. F., 1966, The growth rate of human tumours, Br. J. Cancer 20:74.

    Article  PubMed  CAS  Google Scholar 

  • Steel, G. G., Adams, K., and Hodgett, J., 1971, Cell population kinetics of a spontaneous rat tumour during serial transplantation, Br. J. Cancer 25:802.

    Article  PubMed  CAS  Google Scholar 

  • Suit, H. D., and Maeda, M., 1967, Hyperbaric oxygen and radiobiology of a C3H mouse mammary carcinoma, J. Natl. Cancer Inst. 39:650.

    Google Scholar 

  • Szczepanski, L. V., and Trott, K. R., 1975, Post-irradiation proliferation kinetics of a serially transplanted murine adenocarcinoma, Br. J. Radiol. 48:200.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I. F., 1968, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Br. J. Cancer 22:258.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I. F., 1969, A comparison of cell proliferation parameters in solid and ascites Ehrlich tumors, Cancer Res. 29:1527.

    PubMed  CAS  Google Scholar 

  • Tannock, I. F., 1970, Population kinetics of carcinoma cells, capillary endothelial cells and fibroblasts in a transplanted mouse mammary tumor, Cancer Res. 30:2470.

    PubMed  CAS  Google Scholar 

  • Tannock, I. F., and Hayashi, S., 1972, The proliferation of capillary endothelial cells, Cancer Res. 32:77.

    PubMed  CAS  Google Scholar 

  • Terasima, T., and Tolmach, L. J., 1963, Variations in several responses of HeLa cells to X-irradiation during the division cycle, Biophys. J. 3:11.

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson, R. H., 1968, Changes of oxygenation in tumours, in: Frontiers of Radiation Therapy and Oncology, Vol. 3 (G. Vaeth, ed.), pp. 109–21, Karger, Basel.

    Google Scholar 

  • Thomlinson, R. H., 1971, The oxygen effect and radiotherapy with fast neutrons, Eur. J. Cancer 7:139.

    PubMed  CAS  Google Scholar 

  • Thomlinson, R. H., and Craddock, E. A., 1967, The gross response of an experimental tumour to single doses of x-rays, Br. J. Cancer 21:108.

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9:539.

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson, R. H., Dische, S., Gray, A. J., and Errington, L. M., 1976, Clinical testing of the radiosensitizer Ro-07–0582. III. Response of tumours, Clin. Radiol. 27:167.

    Article  PubMed  CAS  Google Scholar 

  • Till, J. E., 1976, Regulation of hemopoietic stem cells, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 143–156, Academic Press, New York.

    Google Scholar 

  • Trentin, J. J., 1976, Hemopoietic inductive micro-environments, in Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 255–264, Academic Press, New York.

    Google Scholar 

  • Tubiana, M., 1971, Review article: The kinetics of tumour cell proliferation and radiotherapy, Br. J. Radiol. 44:325.

    Article  PubMed  CAS  Google Scholar 

  • Tubiana, M., Frindel, E., and Malaise, E., 1968, The application of radiobiologic knowledge and cellular kinetics to radiation therapy, Am. J. Roentgenol. 102:822.

    CAS  Google Scholar 

  • Tubiana, M., Frindel, E., and Vassort, F., 1975, Critical survey of experimental data on an in vivo synchronization by hydroxyurea, Recent Results Cancer Res. 52:187.

    Article  PubMed  Google Scholar 

  • Unger, E., and Gidali, J., 1971, Autoradiographic studies on 3H-thymidine incorporation in the liver and kidneys of irradiated mice, Strahlentherapie 141:354.

    PubMed  CAS  Google Scholar 

  • Urtasun, R., Band, P., Chapman, J. D., Feldstein, M. L., Mielke, B., and Fryer, C., 1976, Radiation and high dose metronidazole (Flagyl) in supratentorial glioblastomas, N. Engl. J. Med. 294:1364.

    Article  PubMed  CAS  Google Scholar 

  • Van den Brenk, H. A. S., Sharpington, C., Orton, C., and Stone, M., 1974, Effects of X-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the Selye pouch in the rat, Int. J. Radiat. Biol. 25:277.

    Article  Google Scholar 

  • Van Peperzeel, H. A., 1970, Patterns of tumor growth after irradiation: A comparative study in men, dogs and mice, Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Van Peperzeel, H. A., 1972, Effects of single doses of radiation on lung metastases in man and experimental animals, Eur. J. Cancer 8:665.

    PubMed  Google Scholar 

  • Van Putten, L. M., 1968a, Tumour reoxygenation during fractionated radiotherapy; studies with a transplantable mouse osteosarcoma, Eur. J. Cancer 4:173.

    Google Scholar 

  • Van Putten, L. M., 1968b, Oxygenation and cell kinetics after irradiation in a transplantable osteosarcoma, in: Effects of Radiation on Cellular Proliferation and Differentiation (Proceedings of the Monaco Symposium), pp. 493–505, IAEA, Vienna.

    Google Scholar 

  • Van Putten, L. M., and Kallman, R. F., 1966, Oxygenation states of a transplantable tumor during fractionated radiotherapy, J. Natl. Cancer Inst. 40:441.

    Google Scholar 

  • Wara, W. M., Phillips, T. L., Margolis, L. W., and Smith, V., 1973, Radiation pneumonitis; a new approach to the derivation of time dose factors, Cancer 32:547.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J. V., 1976, The cell proliferation kinetics of the EMT6/M/AC mouse tumour at four volumes during unperturbed growth in vivo, Cell Tissue Kinet. 9:147.

    PubMed  CAS  Google Scholar 

  • Whitmore, G. F., Gulyas, S., and Botond, J., 1965, Radiation sensitivity throughout the cell cycle and its relationship to recovery, in: Cellular Radiation Biology, pp. 423–431, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Whitmore, G. F., Till, J. E., and Gulyas, G. S., 1967, Radiation induced mitotic delay in L cells, Radiat. Res. 30:155.

    Article  PubMed  CAS  Google Scholar 

  • Winter, G. D., 1971, The poor healing of burns, in: Research on Burns (P. Mather, T. L. Barclay, and Z. Konickova, eds.), pp. 614–619, Huber, Bern.

    Google Scholar 

  • Withers, H. R., 1967, Recovery and repopulation in vivo by mouse skin epithelial cells during fractionated irradiation, Radiat. Res. 32:227.

    Article  PubMed  CAS  Google Scholar 

  • Withers, H. R., 1975a, Cell cycle redistribution as a factor in multifraction irradiation, Radiology 114:199.

    PubMed  CAS  Google Scholar 

  • Withers, H. R., 1975b, Iso-effect curves for various proliferative tissues in experimental animals, in: Proceedings of the Madison Conference on Time-Dose Relationships in Clinical Therapy (W. Caldwell and D. D. Tolbert, eds.), pp. 30–38, University of Wisconsin, Madison, Wis.

    Google Scholar 

  • Withers, H. R., and Elkind, M. M., 1969, Radiosensitivity and fractionation response of crypt cells of mouse jejunum, Radiat. Res. 38:598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Denekamp, J., Fowler, J.F. (1977). Cell Proliferation Kinetics and Radiation Therapy. In: Becker, F.F. (eds) Radiotherapy, Surgery, and Immunotherapy. Cancer, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2739-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2739-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2741-7

  • Online ISBN: 978-1-4684-2739-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics