Skip to main content

Molecular and Cellular Biology of Radiation Lethality

  • Chapter

Part of the book series: Cancer ((C,volume 6))

Abstract

In the therapy of tumors with radiation and other cytotoxic agents, a primary objective is the differential killing of tumor cells relative to normal cells. Over the years, empirical approaches have had some success; no doubt, some additional widening of the margin between tumor and normal tissue damage can be expected from trial and error. Ultimately, to be able further to improve treatment modes, or to be able to conclude that a given mode has been optimized, a fundamental knowledge of the molecular biology of cell killing is needed.

By acceptance of this article, the publisher or recipient acknowledges the U.S. Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achey, P., and Duryea, H., 1974, Production of DNA strand breaks by the hydroxyl radical, Int. J. Radiat. Biol. 25:595.

    CAS  Google Scholar 

  • Adams, G. E., Redpath, J. L., Cundall, R. B., and Bisby, R. H., 1972, The use of free radical probes in the study of mechanisms of enzyme inactivation, Isr. J. Chem. 10:1079.

    CAS  Google Scholar 

  • Agnew, D. A., Stratford, I. J., and Adams, G. E., 1975, Sensitization of single-strand breaks, Cancer Res. Campaign, Gray Lab. Ann Rep., p. 93.

    Google Scholar 

  • Alper, T., 1963a, Lethal mutations and cell death, Phys. Med. Biol. 8:365.

    Google Scholar 

  • Alper, T., 1963b, Effects on irradiated organisms of growth in the presence of acriflavine, Nature (London) 200:534.

    CAS  Google Scholar 

  • Alper, T., 1970, Mechanisms of lethal radiation damage to cells, in: Proceedings of the Second Symposium on Microdosimetry (Stresa, Italy, 1969) (H. G. Ebert, ed.), pp. 5–36, Euratom, Brussels.

    Google Scholar 

  • Alper, T., 1971, Cell death and its modification: The roles of primary lesions in membranes and’DNA, in: Biophysical Aspects of Radiation Quality, pp. 171–184, I.A.E.A., Vienna.

    Google Scholar 

  • Alper, T., 1974, Observations relevant to the mechanism of RBE effects in the killing of cells, in: Biological Effects of Neutron Irradiation, pp. 133–147, I.A.E.A., Vienna.

    Google Scholar 

  • Alper, T., and Howard-Flanders, P., 1956, Role of oxygen in modifying the radiosensitivity of E. coli B, Nature (London) 178:978.

    CAS  Google Scholar 

  • Alper, T., Moore, J. L., and Smith, P., 1967, The role of dose-rate, irradiation technique and LET in determining radiosensitivities at low oxygen concentrations, Radiat. Res. 32:780.

    PubMed  CAS  Google Scholar 

  • Barendsen, G. W., 1974, Relative biological effectiveness and biological complexity, in: Proceedings of the Fourth Symposium on Microdosimetry (Verbania-Pallanza, Italy, 24–28 Sept. 1973) (J. Booz, H. G. Ebert, R. Eickel, and A. Waker, eds.), EURATOM Report EUR 5122 d-e-f, pp. 235–252.

    Google Scholar 

  • Becker, D., Redpath, J. L., and Grossweiner, L. I., 1977, Radiat. Res., in press.

    Google Scholar 

  • Ben-Hur, E., and Elkind, M. M., 1972, Damage and repair of DNA in 5-bromodeoxyuridine labelled Chinese hamster cells exposed to fluorescent light, Biophys. J. 12:636.

    PubMed  CAS  Google Scholar 

  • Ben-Hur, E., and Elkind, M. M., 1973a, DNA cross-linking in Chinese hamster cells exposed to near UV light in the presence of 4,5′,8-trimethylpsoralen, Biochim. Biophys. Acta 331:181.

    PubMed  CAS  Google Scholar 

  • Ben-Hur, E., and Elkind, M. M., 1973b, Psoralen plus near ultraviolet light inactivation of cultured Chinese hamster cells and its relation to DNA cross-links, Mutat. Res. 18:315.

    PubMed  CAS  Google Scholar 

  • Ben-Hur, E., and Elkind, M. M., 1974, Thermally enhanced radioresponse of cultured Chinese hamster cells: Damage and repair of single-stranded DNA and a DNA complex, Radiat. Res. 59:484.

    PubMed  CAS  Google Scholar 

  • Ben-Hur, E., Bronk, B., and Elkind, M. M., 1972, Thermally enhanced radiosensitivity of cultured Chinese hamster cells. Nature (London) New Biol. 238:209.

    CAS  Google Scholar 

  • Ben-Hur, E., Elkind, M. M., and Bronk, B. V., 1974, Thermally enhanced radioresponse of cultured Chinese hamster cells: Inhibition of repair of sublethal damage and enhancement of lethal damage, Radiat. Res. 58:38.

    PubMed  CAS  Google Scholar 

  • Berezney, R., and Coffey, D. S., 1975, Nuclear protein matrix: Association with newly synthesized DNA, Science 189:291.

    PubMed  CAS  Google Scholar 

  • Berry, R. J., Hall, E. J., Forster, D. W., Storr, T. H., and Goodman, M. J., 1969, Survival of mammalian cells exposed to X-rays delivered at ultra high dose rates, Br. J. Radiol. 42:102.

    PubMed  CAS  Google Scholar 

  • Blok, J., and Loman, H., 1973, The effects of γ-irradiation in DNA, Curr. Top. Radiat. Res. Q. 9:165.

    PubMed  CAS  Google Scholar 

  • Bonura, T., and Smith, K. C., 1976, The involvement of indirect effects in cell killing and double-strand breakage in γ-irradiated Escherichia coli K.12, Int. J. Radiat. Biol. 29:293.

    CAS  Google Scholar 

  • Bonura, T., Town, C. D., Smith, K. C., and Kaplan, H. S., 1975, The influence of oxygen on the yield of DNA double-strand breaks in X-irradiated Escherichia coli K12, Radiat. Res. 63:567.

    PubMed  CAS  Google Scholar 

  • Boyce, R. P., and Tepper, M., 1968, X-ray induced single-strand breaks and joining of broken strands in super infecting À DNA in Escherichia coli lysogenic for À, Virology 34:344.

    PubMed  CAS  Google Scholar 

  • Burrell, A. D., Feldschreiber, P., and Dean, C. J., 1971, DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans, Biochim. Biophys. Acta 247:38.

    PubMed  CAS  Google Scholar 

  • Cabradilla, C. D., and Toliver, A. P., 1975, S-phase dependent forms of DNA nuclear membrane complexes in HeLa cells, Biochim. Biophys. Acta 402:188.

    PubMed  CAS  Google Scholar 

  • Camargo, E. P., and Plaut, W., 1967, The radioautographic detection of DNA with tritiated actinomycin D., J. Cell. Biol. 35:713.

    PubMed  CAS  Google Scholar 

  • Chapman, J. D., Reuvers, A. P., Borsa, J., and Greenstock, C. L., 1973, Chemical radioprotection and radiosensitization of mammalian cells growing in vitro, Radiat. Res. 56:291.

    PubMed  CAS  Google Scholar 

  • Chelack, W. S., Forsyth, M. P., and Petkau, A., 1974, Radiobiological properties of Acholepasma laidlawii B, Can. J. Microbiol. 20:307.

    PubMed  CAS  Google Scholar 

  • Christensen, R. C., Tobias, C. A., and Taylor, W. D., 1972, Heavy-ion-induced single- and double-strand breaks in øX-174 replicative form DNA, Int. J. Radiat. Biol. 22:457.

    CAS  Google Scholar 

  • Cleaver, J. E., 1974, Sedimentation of DNA from human fibroblasts irradiated with ultraviolet light: Possible detection of excision breaks in pigmentosum cells, Radiat. Res. 57:207.

    PubMed  CAS  Google Scholar 

  • Cole, A., 1965, The study of radiosensitive structures with low voltage electron beams, in: Cellular Radiation Biology, pp. 267–271, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Cole, R. S., and Sinden, R. R., 1975, Repair of cross-linked DNA in Escherichia coli, in: Molecular Mechanisms for Repair of DNA, Part B (P. C. Hanawalt and R. B. Setlow, eds.), pp. 487–495, Plenum Press, New York.

    Google Scholar 

  • Cole, R. S., Levitan, D., and Sinden, R. R., 1976, Removal of psoralen interstrand cross-links from DNA of Escherichia coli: Mechanism and genetic control, J. Mol. Biol. 103:39.

    PubMed  CAS  Google Scholar 

  • Comings, D. E., and Okada, T. A., 1970, Association of chromatin fibers with the annuli of the nuclear membrane, Exp. Cell Res. 62:293.

    PubMed  CAS  Google Scholar 

  • Comings, D. E., and Okada, T. A., 1973, DNA replication and the nuclear membrane, J. Mol. Biol. 75:609.

    PubMed  CAS  Google Scholar 

  • Cook, P. R., and Brazell, I. A., 1975, Supercoils in human DNA, J. Cell Sci. 19:261.

    PubMed  CAS  Google Scholar 

  • Coquerelle, T., Bopp, A., Kessler, B., and Hagen, U., 1973, Strand breaks and 5′ end-groups in DNA of irradiated thymocytes, Int. J. Radiat. Biol. 24:397.

    CAS  Google Scholar 

  • Corry, P. M., and Cole, A., 1968, Radiation-induced double-strand scission of the DNA of mammalian metaphase chromosomes, Radiat. Res. 36:528.

    PubMed  CAS  Google Scholar 

  • Corry, P. M., and Cole, A., 1973, Double strand rejoining in mammalian DNA, Nature (London) New Biol. 245:100.

    CAS  Google Scholar 

  • Cramp, W. A., Watkins, D. K., and Collins, J., 1972, Effects of ionizing radiation on bacterial DNA-membrane complexes, Nature (London) 235:76.

    CAS  Google Scholar 

  • Datta, R., Cole, A., and Robinson, S., 1976, Use of track-end alpha particles from 241Am to study radiosensitive sites in CHO cells, Radiat. Res. 65:139.

    PubMed  CAS  Google Scholar 

  • Davies, H. G., and Small, J. V., 1968, Structural units in chromatin and their aventation on membranes, Nature (London) 217:1122.

    CAS  Google Scholar 

  • Dean, C. J., and Alexander, P., 1962, Sensitization of radioresistant bacteria to X-rays by iodoacetamide, Nature (London) 196:1324.

    CAS  Google Scholar 

  • Dean, C. J., and Pauling, C., 1970, Properties of a deoxyribonucleic acid mutant of Escherichia coli: X-ray sensitivity, J. Bacterid. 102:588.

    CAS  Google Scholar 

  • Dean, C. J., Ormerod, M. G., Serianni, R. W., and Alexander, P., 1969, DNA strand breakage in cells irradiated with X-rays, Nature (London) 222:1042.

    CAS  Google Scholar 

  • DeJong, J., Loman, H., and Blok, J., 1972, Inactivation of biologically active DNA by radiation-induced phenylalanine radicals, Int. J. Radiat. Biol. 22:11.

    CAS  Google Scholar 

  • Demopoulos, H. B., 1973, The basis of free radical pathology, Fed. Proc. 32:1859 (and references therein).

    PubMed  CAS  Google Scholar 

  • Dewey, D. L., and Boag, J. W., 1959, Modification of the oxygen effect when bacteria are given large pulses of radiation, Nature (London) 183:1450.

    CAS  Google Scholar 

  • Dingman, C. W., and Sporn, M. D., 1965, Actinomycin D and hydrocortisone: Intracellular binding in rat liver, Science 149:1251.

    PubMed  Google Scholar 

  • Dugle, D.L., Gillespie, C. J., and Chapman, J. D., 1976, DNA strand breaks, repair, and survival in X-irradiated mammalian cells, Proc. Natl. Acad. Sci. USA 73:809.

    PubMed  CAS  Google Scholar 

  • Ebstein, B. S., 1967, Tritiated actinomycin D as a cytochemical label for small amounts of DNA, J. Cell Biol. 35:709.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., 1970, Damage and repair processes relative to neutron (and charged particle) irradiation, Curr. Top. Radiat. Res. 7:1.

    CAS  Google Scholar 

  • Elkind, M. M., 1971, Sedimentation of DNA released from Chinese hamster cells, Biophys. J. 11:502.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., 1974, Recovery, reoxygenation, and a strategy to improve radiotherapy, in: The Biological and Clinical Basis of Radiosensitivity (M. Friedman, ed.), pp. 343–372, Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Elkind, M. M., 1975a, Damage-repair studies of the DNA from X-irradiated Chinese hamster cells, in: Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), pp. 689–698, Plenum Press, New York.

    Google Scholar 

  • Elkind, M. M., 19756, unpublished findings.

    Google Scholar 

  • Elkind, M. M., and Ben-Hur, E., 1974. DNA damage in mammalian cells and its relevance to lethality, in: Proceedings of the Fourth Symposium on Microdosimetry (Verbania-Pallenza, Italy, 24–28 Sept. 1973) (J. Booz, H. G. Ebert, R. Eickel, and A. Waker, eds.), EURATOM Report EUR 5122 d-e-f, 1974.

    Google Scholar 

  • Elkind, M. M., and Chang-Liu, C. M., 1972a, Repair of a DNA complex from X-irradiated Chinese hamster cells, Int. J. Radiat. Biol. 22:75.

    CAS  Google Scholar 

  • Elkind, M. M., and Chang-Liu, C. M., 1972b, Actinomycin D inhibition of repair of a DNA complex from Chinese hamster cells, Int. J. Radiat. Biol. 22:313.

    CAS  Google Scholar 

  • Elkind, M. M., and Kamper, C., 1970, Two forms of repair of DNA in mammalian cells following irradiation, Biophys. J. 10:237.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., and Kano, E., 1971, Radiation-induced age-response changes in Chinese hamster cells: Evidence for a new form of damage and its repair, Int. J. Radiat. Biol. 19:547.

    CAS  Google Scholar 

  • Elkind, M. M., and Sinclair, W. K., 1965, Recovery in X-irradiated mammalian cells, in: Current Topics in Radiation Research, Vol. 1 (M. Ebert and A. Howard, eds.), pp. 165–220, North-Holland, Amsterdam.

    Google Scholar 

  • Elkind, M. M., and Sutton, H. A., 1959, X-ray damage and recovery in mammalian cells in culture, Nature (London) 184:1293.

    CAS  Google Scholar 

  • Elkind, M. M., and Sutton, H. A., 1960, Radiation response of mammalian cells grown in culture. I. Repair of X-ray damage in surviving Chinese hamster cells, Radiat. Res. 13:556.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., and Whitmore, G. F., 1967, The Radiobiology of Cultured Mammalian Cells, Gordon and Breach, New York.

    Google Scholar 

  • Elkind, M. M., and Withers, H. R., 1970, Sublethal damage repair and its role in the radiation response of cell renewal systems, in: Pathology of Radiation (C. C. Berdjic, ed.), pp. 86–97, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Elkind, M. M., Sutton, H. A., and Moses, W. B., 1961, Postirradiation survival kinetics of mammalian cells grown in culture, J. Comp. Cell Physiol. 58:113 (Suppl. 1).

    Google Scholar 

  • Elkind, M. M., Han, A., and Wolz, K., 1963, Response of mammalian cells grown in culture. IV. Dose dependence of division delay and postirradiation growth in surviving and nonsurviving Chinese hamster cells, J. Natl. Cancer Inst. 30:705.

    Google Scholar 

  • Elkind, M. M., Alescio, T., Swain, R. W., Moses, W. B., and Sutton, H., 1964a, Recovery of hypoxic mammalian cells from sub-lethal X-ray damage, Nature (London) 202:1190.

    CAS  Google Scholar 

  • Elkind, M. M., Whitmore, G. F., and Alescio, T., 1964b, Actinomycin D: Suppression of recovery in X-irradiated mammalian cells, Science 143:1454.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., Swain, R. W., Alescio, T., Sutton, H., and Moses, W. B., 1965, Oxygen, nitrogen, recovery, and radiation therapy, in: Cellular Radiation Biology, pp. 442–461, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Elkind, M. M., Sutton-Gilbert, H. A., and Moses, W. B., 1966, unpublished data.

    Google Scholar 

  • Elkind, M. M., Kamper, C., Moses, W. B., and Sutton-Gilbert, H., 1967a, Sublethal-lethal radiation damage and repair in mammalian cells, Brookhaven Symp. Biol. 20:134.

    Google Scholar 

  • Elkind, M. M., Moses, W. B., and Sutton-Gilbert, H., 1967b, Radiation response of mammalian cells grown in culture. VI. Protein, DNA and RNA inhibition during the repair of X-ray damage, Radiat. Res. 31:156.

    PubMed  CAS  Google Scholar 

  • Elkind, M. M., Sutton-Gilbert, H., Moses, W. B., and Kamper, C., 1967c, Sub-lethal and lethal radiation damage, Nature (London) 214:1088.

    CAS  Google Scholar 

  • Elkind, M. M., Sakamoto, K., and Kamper, C., 1968a, Age-dependent toxic properties of actinomycin D and X-rays in cultured Chinese hamster cells, Cell Tissue Kinet. 1:209.

    CAS  Google Scholar 

  • Elkind, M. M., Withers, H. R., and Belli, J. A., 1968b, Intracellular repair and the oxygen effect in radiobiology and radiotherapy, Front. Radiat. Ther. Oncol. 3:55.

    Google Scholar 

  • Emmerson, P. T., 1973, X-ray damage to DNA and loss of biological function: Effect of sensitizing agents, in: Advances in Radiation Chemistry, Vol. 3 (M. Burton and J. L. Magee, eds.), pp. 209–270, Wiley, New York.

    Google Scholar 

  • Epp, E. R., Weiss, H., and Santomasso, A., 1968, The oxygen effect in bacterial cells irradiated with high intensity pulsed electrons, Radiat. Res. 34:320.

    PubMed  CAS  Google Scholar 

  • Epp, E. R., Weiss, H., Djordjevic, B., and Santomasso, A., 1972, The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen, Radiat. Res. 52:324.

    PubMed  CAS  Google Scholar 

  • Epp, E. R., Weiss, H., and Ling, C. C., 1976, Irradiation of cells by single and double pulses of high intensity irradiation: Oxygen sensitization and diffusion kinetics, Curr. Top. Radiat. Res. Q. 11:201.

    PubMed  CAS  Google Scholar 

  • Fox, M., and Nias, A. H. W., 1970, The influence of recovery from sublethal damage on the response of cells to protracted irradiation at low dose-rate, Curr. Top. Radiat. Res. Q. 7:71.

    CAS  Google Scholar 

  • Fox, R. A., Flelden, E. M., and Sapora, O., 1976, Yield of single-strand breaks in the DNA of E. coli 10 msecs after irradiation, Int. J. Radiat. Biol 29:391.

    CAS  Google Scholar 

  • Freifelder, D., 1966, DNA strand breakage by X-irradiation, Radiat. Res. 29:329.

    PubMed  CAS  Google Scholar 

  • George, K. C., Shenoy, M. A., Josm, D. S., Bhatt, B. Y., Singh, B. B., and Gopal-Ayengar, 1975, Modification of radiation effects on cells by membrane binding agents—Procaine HCl, Br. J. Radiol. 48:611.

    PubMed  CAS  Google Scholar 

  • Hagen, U., Keck, K., Korger, H., Zimmerman, F., and Lucking, T., 1965, Ultraviolet light inactiva-tion of the priming ability of DNA in the RNA polymerase system, Biochim. Biophys. Acta 95:418.

    PubMed  CAS  Google Scholar 

  • Hahn, G. M., and Little, J. B., 1972, Plateau-phase cultures of mammalian cells: An in vitro model for human cancer, Curr. Top. Radiat. Res. 8:39.

    CAS  Google Scholar 

  • Hall, E. J., 1972, Radiation dose-rate: A factor of importance in radiobiology and radiotherapy, Br. J. Radiol. 45:81.

    PubMed  CAS  Google Scholar 

  • Han, A., and Elkind, M. M., 1976, Cell cycle dependent interaction of damage due to ionizing and nonionizing radiation in Chinese hamster cells, Radiat. Res. 67: 586.

    Google Scholar 

  • Hariharan, P. V., and Cerutti, P. A., 1972, Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans, J. Mol. Biol. 66:65.

    PubMed  CAS  Google Scholar 

  • Hariharan, P. V., and Cerutti, P. A., 1974, Excision of damaged thymine residues from gamma-irradiated poly (dA-dT) by crude extracts of Escherichia coli, Proc. Natl. Acad. Sci. USA 71:3532.

    PubMed  CAS  Google Scholar 

  • Hariharan, P. V., and Hutchison, F., 1973, Neutral sucrose gradient sedimentation of very large DNA from Bacillus subtilis. II. Double-strand breaks formed by gamma ray irradiation of the cells, J. Mol. Biol. 75:479.

    PubMed  CAS  Google Scholar 

  • Haynes, R. H., 1962, Reciprocal sensitization of E. coli by ionizing and UV radiation, Radiat. Res. 16:562.

    Google Scholar 

  • Horikawa, M., Nikaido, O., Tanaka, T., Nagata, H., and Sugahara, T., 1970, Comparative studies on the rejoining of DNA strand breaks induced by X-irradiation in mammalian cell lines in vitro, Exp. Cell. Res. 63:325.

    PubMed  CAS  Google Scholar 

  • Howard-Flanders, P., 1960, Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds, Nature (London) 186:485.

    CAS  Google Scholar 

  • Jacob, F., Ryter, A., and Cuzin, F., 1966, On the association between DNA and membrane in bacteria, Proc. Roy. Soc. (London) 164:267.

    CAS  Google Scholar 

  • Johansen, I., and Howard-Flanders, P., 1965, Macromolecular repair and free-radical scavenging in the protection of bacteria against X-rays, Radiat. Res. 24:184.

    PubMed  CAS  Google Scholar 

  • Johansen, I., Gurvin, I., and Rupp, W. D., 1971, The formation of single-strand breaks in intracellular DNA by X-rays, Radiat. Res. 48:599.

    PubMed  CAS  Google Scholar 

  • Johansen, I., Boye, E., and Brustad, T., 1975a, Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage À DNA in Escherichia coli lysogenic for À, in: Fast Processes in Radiation Chemistry and Biology (G. E. Adams, E. M. Fielden, and B. D. Michael, eds.), pp. 267–274, Institute of Physics and Wiley, London.

    Google Scholar 

  • Johansen, I., Brustad, T., and Rupp, W. D., 1975b, DNA strand breaks measured within 100 milliseconds of irradiation of Escherichia coli by 4 MeV electrons, Proc. Natl. Acad. Sci. USA 72:167.

    PubMed  CAS  Google Scholar 

  • Kaplan, H. S., 1966, DNA strand scission and loss of viability after X-irradiation of normal and sensitized bacterial cells, Proc. Natl. Acad. Sci. USA 55:1442.

    PubMed  CAS  Google Scholar 

  • Kaplan, H. S., and Moses, L. E., 1964, Biological complexity and radiosensitivity, Science 145:21.

    PubMed  CAS  Google Scholar 

  • Kaplan, H. S., and Zavarine, R., 1962, Correlation of bacterial radiosensitivity and DNA base composition, Biochem. Biophys. Res. Commun. 8:432.

    PubMed  CAS  Google Scholar 

  • Keller, J. M., and Riley, D. E., 1976, Nuclear ghosts: A nonmembranous structural component of mammalian cell nuclei, Science 193:399.

    PubMed  CAS  Google Scholar 

  • Kitayama, S., and Matsuyama, A., 1968, Possibility of the repair of double-strand scissions in Micrococcus radiodurans DNA caused by gamma rays, Biochem. Biophys. Res. Commun. 33:418.

    PubMed  CAS  Google Scholar 

  • Koehnlein, W., and Hutchinson, F., 1969, ESR-studies of normal and 5-bromouracil-substituted DNA of Bacillus subtilis after irradiation with ultraviolet light, Radiat. Res. 39:745.

    CAS  Google Scholar 

  • Krasin, F., and Hutchinson, F., 1976, Repair of DNA double-strand breaks by recombination, Radiat. Res. 67:534.

    Google Scholar 

  • Krisch, R. E., 1976, Lethality and double-strand scissions from 14C delay in the DNA of microorganisms, Int. J. Radiat. Biol. 29:249.

    CAS  Google Scholar 

  • Krisch, R. E., Krasin, F., and Sauri, C. J., 1976, DNA breakage, repair and lethality after 125I decay in rec+ and rec A strains of Escherichia coli, Int. J. Radiat. Biol. 29:37.

    CAS  Google Scholar 

  • Lark, K. G., 1972, Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T, J. Mol. Biol. 64:47.

    PubMed  CAS  Google Scholar 

  • Lehmann, A. R., and Ormerod, M. G., 1970, The replication of DNA in murine lymphoma cells. I. Rate of replication, Biochim. Biophys. Acta 217:268.

    PubMed  CAS  Google Scholar 

  • Lennartz, M., Coquerelle, T., and Hagen, U., 1973, Effect of oxygen on DNA strand breaks in irradiated thymocytes, Int. J. Radiat. Biol. 24:621.

    CAS  Google Scholar 

  • Lett-, J. T., Caldwell, I., and Little, J. G., 1970, Repair of X-ray damage to the DNA in Micrococcus radiodurans: The effect of 5-bromodeoxyuridine, J. Mol. Biol. 48:395.

    PubMed  CAS  Google Scholar 

  • Lett, J. T., Sun, C., and Wheeler, K. T., 1972, Restoration of the DNA structure in X-irradiated eucaryotic cells: In vitro and in vivo, in: Molecular and Cellular Repair Processes (R. F. Beers Jr., R. M. Herriott, and R. C. Tilghman, eds.), pp. 147–158, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Lion, M., 1972, Mechanism of sensitization to UV radiation by 5-Br-uracil substituted DNA, Isr. J. Chem. 10:1151.

    CAS  Google Scholar 

  • Lohman, P. H. M., 1968, Induction and rejoining of breaks in the deoxyribonucleic acid of human cells irradiated at various phases of the cell cycle, Mutat. Res. 6:449.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., 1968, Control of DNA replication by membrane, Nature (London) 219:485.

    CAS  Google Scholar 

  • Mattern, M. R., Hariharan, P. V., Dunlap, B. E., and Cerutti, P. A., 1973, DNA degradation and excision repair in γ-irradiated Chinese hamster ovary cells, Nature (London) New Biol. 245:230.

    CAS  Google Scholar 

  • McGrath, R. A., and Williams, R. W., 1966, Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces, Nature (London) 212:534.

    CAS  Google Scholar 

  • Michael, B. D., Adams, G. E., Hewitt, H. B., Jones, W. B. G., and Watts, M. E., 1973, A post-effect of oxygen in irradiated bacteria: A submillisecond fast mixing study, Radiat. Res. 54:239.

    PubMed  CAS  Google Scholar 

  • Munson, R. J., Neary, G. J., Bridges, B. A., and Preston, R. J., 1967, The sensitivity of Escherichia coli to ionizing particles of different LET’s, Int. J. Radiat. Biol. 13:205.

    CAS  Google Scholar 

  • Neary, G. J., Simpson-Gildemeister, V. F. W., and Peacocke, A. R., 1970, The influence of radiation quality and oxyen on strand breakage in dry DNA, Int. J. Radiat. Biol. 18:25.

    CAS  Google Scholar 

  • Neary, G. J., Horgan, V. J., Bance, D. A., and Stretch, A., 1972, Further data on DNA strand breakage by various radiation qualities, Int. J. Radiat. Biol. 22:525.

    CAS  Google Scholar 

  • Nias, A. H. W., Swallow, A. J., Keene, J. P., and Hodgson, B. W., 1969, Effects of pulses of irradiation on the survival of mammalian cells, Br. J. Radiol. 42:553.

    PubMed  CAS  Google Scholar 

  • Ormerod, M. G., and Lehmann, A. R., 1971, The release of high molecular weight DNA from a mammalian cell (L5178Y), Biochim. Biophys. Acta 228:331.

    PubMed  CAS  Google Scholar 

  • Ormerod, M. G., and Stevens, U., 1971, The rejoining of x-ray-induced strand breaks in the DNA of murine a lymphoma cell (L5178Y), Biochim. Biophys. Acta 232:72.

    PubMed  CAS  Google Scholar 

  • Painter, R. B., 1970, Repair of DNA in mammalian cells, Curr. Top. Radiat. Res. Q. 7:45.

    CAS  Google Scholar 

  • Palcic, B., and Skarsgard, L. D., 1975, Absence of ultrafast processes of repair of single-strand breaks in mammalian DNA, Int. J. Radiat. Biol. 27:121.

    CAS  Google Scholar 

  • Perry, R. P., 1963, Selective effects of actinomycin D on the intracellular distribution of RNA synthesis in tissue culture cells, Exp. Cell. Res. 29:400.

    CAS  Google Scholar 

  • Petkau, A., and Chelack, W. S., 1974, Radioprotection of Acholeplasma laidlawii B by cysteine, Int. J. Radiat. Biol. 25:321.

    CAS  Google Scholar 

  • Powers, E. L., 1972, The hydrated electron, the hydroxyl radical, and hydrogen peroxide in radiation damage in cells, Isr. J. Chem. 10:1199.

    CAS  Google Scholar 

  • Powers, E. L., and Gampel-Jobbagy, Z., 1972, Water-derived radicals and the radiation sensitivity of bacteriophage T7, Int. J. Radiat. Biol. 21:353.

    CAS  Google Scholar 

  • Puck, T. T., and Kao, F. T., 1967, Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants, Proc. Natl. Acad. Sci. USA 58:1227.

    PubMed  CAS  Google Scholar 

  • Puck, T. T., and Marcus, P. E., 1956, Action of X-rays on mammalian cells, J. Exp. Med. 103:653.

    CAS  Google Scholar 

  • Rauth, A. M., and Simpson, L. A., 1964, The energy loss of electrons in solids, Radiat. Res. 22:643.

    CAS  Google Scholar 

  • Redpath, J. L., and Patterson, L. K., 1976, Radiosensitization of Serratia marcescens by cetyl-pyridinium chloride: Evidence for membrane-associated events, Radiology 118:725.

    PubMed  CAS  Google Scholar 

  • Reich, E., 1964, Actinomycin: Correlation of structure and function of its complexes with purines and DNA, Science 143:684.

    PubMed  CAS  Google Scholar 

  • Remsen, F., Hariharan, P. W., and Cerutti, P. A., 1976, Excision repair of monomeric, ring-saturated thymine damage in human cells, Radiat. Res. 67:514.

    Google Scholar 

  • Roots, R., and Okada, S., 1972, Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds, Int. J. Radiat. Biol. 21:329.

    CAS  Google Scholar 

  • Rubenstein, I., and Leighton, S. B., 1974, The influence of rotor speed on the sedimentation behavior in sucrose gradients of high molecular wieght DNA’s, Biophys. Chem. 1:292.

    PubMed  CAS  Google Scholar 

  • Salgnik, R. I., Drevick, V. F., and Vasyunia, E. A., 1967, Isolation of ultraviolet-denatured regions of DNA and their base composition, J. Mol. Biol. 30:219.

    Google Scholar 

  • Sapora, O., Fielden, E. M., and Loverock, P. S., 1975, The application of rapid lysis techniques in radiobiology. I. The effect of oxygen and radiosensitizers on DNA strand break production and repair in E. coli B/r, Radiat. Res. 64:431.

    PubMed  CAS  Google Scholar 

  • Sawads, S. and Okada, S., 1970, Rejoining of single-strand breaks of DNA in cultured mammalian cells, Radiat. Res. 41:145.

    Google Scholar 

  • Serna, F. R., and Samoylenko, I. I., 1975, The effect of temperature shock on the yield of gamma-induced single-strand breaks in bacterial DNA, Biochem. Biophys. Res. Commun. 67:1415.

    PubMed  CAS  Google Scholar 

  • Setlow, R. B., 1974, The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. USA 71:3363.

    PubMed  CAS  Google Scholar 

  • Shenoy, M. A., Singh, B. B., and Gopal-Ayengar, A. R., 1974, Enhancement of radiation lethality of E. coli B/r by procaine HCl, Nature (London) 248:415.

    CAS  Google Scholar 

  • Shenoy, M. A., Asquith, J. C., Adams, G. E., Michael, B. D., and Watts, M. E., 1975a, Time resolved oxygen effects in irradiated bacteria and mammalian cells: A rapid mix study, Radiat. Res. 62:498.

    PubMed  CAS  Google Scholar 

  • Shenoy, M. A., George, K. C., Singh, B. B., and Gopal-Ayengar, A. R., 1975b, Modification of radiation effects in single cell systems by membrane-binding agents, Int. J. Radiat. Biol. 28:519.

    CAS  Google Scholar 

  • Shipley, W. U., Elkind, M. M., and Prather, W. B., 1971, Potentiation of X-ray killing by 5-bromodeoxyuridine in Chinese hamster cells: A reduction in capacity for incurring sublethal damage, Radiat. Res. 47:437.

    PubMed  CAS  Google Scholar 

  • Simpson, J. R., Nagle, W. A., Beck, M. D., and Belli, J. A., 1973, Molecular nature of mammalian cell DNA in alkaline sucrose gradients, Proc. Natl. Acad. Sci. USA 70(12, 1):3660.

    PubMed  CAS  Google Scholar 

  • Sinclair, W. K., 1965, Hydroxyurea: Differential lethal effects on cultured mammalian cells during the cell cycle, Science 150:1729.

    PubMed  CAS  Google Scholar 

  • Sinclair, W. K., 1967, Hydroxyurea: Effect on Chinese hamster cells grown in culture, Cancer Res. 27:297.

    PubMed  CAS  Google Scholar 

  • Sinclair, W. K., and Morton, R. A., 1964, Recovery following X-irradiation of synchronized Chinese hamster cells, Nature (London) 203:247.

    CAS  Google Scholar 

  • Sinclair, W. K., and Morton, R. A., 1965, X-ray and ultraviolet sensitivity of synchronized Chinese hamster cells at various stages of the cell cycle, Biophys. J. 5:1.

    PubMed  CAS  Google Scholar 

  • Sparrow, A. H., Underbrink, A. G., and Sparrow, R. C., 1967, Chromosomes and cellular radiosen-sitivity. I. The relationship of D o to chromosome volume and complexity in seventy-nine different organisms, Radiat. Res. 32:915.

    PubMed  CAS  Google Scholar 

  • Stubblefield, E., 1973, The structure of mammalian chromosomes, in: International Review of Cytology (G. H. Baurne and J. F. Danielli, eds.), pp. 1–60, Academic Press, New York.

    Google Scholar 

  • Tappel, A. L., 1973, Lipid peroxidation damage to cell components, Fed. Proc. 32:1870.

    PubMed  CAS  Google Scholar 

  • Terzi, M., 1961, Comparative analysis of inactivation efficiency of radiation on different organisms, Nature (London) 191:461.

    CAS  Google Scholar 

  • Town, C. D., 1967, Effect of high dose-rates on survival of mammalian cells, Nature (London) 215:847.

    CAS  Google Scholar 

  • Town, C. D., Smith, K. C., and Kaplan, H. S., 1972, Influence of ultra fast repair processes (independent of DNA polymerase I) on the yield of DNA single-strand breaks in Escherichia coli K12 X-irradiated in the presence or absence of oxygen, Radiat. Res. 52:99.

    PubMed  CAS  Google Scholar 

  • Town, C. D., Smith, K. C., and Kaplan, H. S., 1973a, Repair of X-ray damage to bacterial DNA, Curr. Top. Radiat. Res. Q. 8:351.

    PubMed  CAS  Google Scholar 

  • Town, C. D., Smith, K. C., and Kaplan, H. S., 1973b, The repair of DNA single-strand breaks in E. coli Kl2 X-irradiated in the presence or absence of oxygen, Radiat. Res. 55:334.

    PubMed  CAS  Google Scholar 

  • Ullrich, A., and Hagen, U., 1971, Base liberation and concomitant reactions in irradiated DNA solutions, Int. J. Radiat. Biol. 19:507.

    CAS  Google Scholar 

  • Van Hemmen, J. J., Meuling, W. J. A., Van der Schans, G. P., and Bleichrodt, J. F., 1974a, On the mechanism of sensitization of living cells towards ionizing radiation by oxygen and other sensitizers, Int. J. Radiat. Biol. 25:399.

    Google Scholar 

  • Van Hemmen, J. J., Meuling, W. J. A., and Bleichrodt, J. F., 1974b, Radiosensitization of biologically active DNA in cellular extracts by oxygen: Evidence that the presence of SH compounds are not required, Int. J. Radiat. Biol. 26:547.

    Google Scholar 

  • Veatch, W., and Okada, S., 1969, Radiation-induced breaks of DNA in cultured mammalian cells, Biophys. J. 9:330.

    PubMed  CAS  Google Scholar 

  • Wacker, A., Menningmann, H. D., and Szybalski, W., Effects of visible light on 5-bromouracil labelled DNA, Nature (London) 196:685.

    Google Scholar 

  • Ward, J. F., 1972, Mechanisms of radiation-induced strand break formation in DNA, Isr. J. Chem. 10:1123.

    CAS  Google Scholar 

  • Waring, M. J., 1968, Drugs which affect structure and function of DNA, Nature (London) 219:1320.

    CAS  Google Scholar 

  • Watkins, D. K., 1970, High oxygen effect for the release of enzymes from isolated mammalian liposomes after treatment with ionizing radiation, in: Advances in Biological and Medical Physics (J. H. Lawrence and X- W. Gofman, eds.), pp. 289–305, Academic Press, New York.

    Google Scholar 

  • Wheeler, K. T., and Lett, J. T., 1974, On the possibility that DNA repair is related to age in non-dividing cells, Proc. Natl. Acad. Sci. USA 71:1862.

    PubMed  CAS  Google Scholar 

  • Wills, E. D., and Wilkinson, A. E., 1967, The effect of irradiation on lipid peroxide formation in subcellular fractions, Radiat. Res. 31:732.

    CAS  Google Scholar 

  • Wise, G. E., and Prescott, D. M., 1973, Initiation and continuation of DNA replication are not associated with the nuclear envelope in mammalian cells, Proc. Natl. Acad. Sci. USA 70:714.

    PubMed  CAS  Google Scholar 

  • Yang, S. J., Hahn, G. M., and Van Kersen-Bax, I., 1970, Effects of light on viability and DNA synthesis of mammalian cells preincubated in media containing brominated pyrimidines, Photochem. Photobiol. 11:131.

    PubMed  CAS  Google Scholar 

  • Zermeno, A., and Cole, A., 1969, Radiosensitive structure of metaphase and interphase hamster cells as studied by low-voltage electron beam irradiation, Radiat. Res. 39:669.

    PubMed  CAS  Google Scholar 

  • Zimm, B. H., 1974, Anomalies in sedimentation. IV. Decrease in sedimentation coefficients of chains at high fields, Biophys. Chem. 1:279.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Elkind, M.M., Redpath, J.L. (1977). Molecular and Cellular Biology of Radiation Lethality. In: Becker, F.F. (eds) Radiotherapy, Surgery, and Immunotherapy. Cancer, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2739-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2739-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2741-7

  • Online ISBN: 978-1-4684-2739-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics