Skip to main content

Ontogeny of Sensory Systems

  • Chapter
Sensory Integration

Abstract

The branch of neuroscience seeking relationships between the structural development of the sensory systems and the emergence of their function is still in its infancy. Although such relationships have been found, current knowledge is restricted to simple generalizations about functional capacities, such as the onset of vision or the onset of audition, and the most obvious of structural changes, such as the formation of synaptic connections between the eye or the ear and the brain. The inability to show more complicated relationships is due in part to difficulties in testing a wide variety of sensory functions in immature animals and in part to the subtlety of many of the developmental changes in the structure of neurons. Accordingly, this chapter is divided into two sections, the first focusing on anatomical structure and the second on function, both physiological and perceptual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackroyd, C., Humphrey, N. K., and Warrington, E. K., Lasting effects of early blindness: A case study. Quart. J. Exp. Psychol, 1974, 26, 114–124.

    Google Scholar 

  • Angevine, J. B., Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse. Exp. Neurol. Suppl, 1965, 2, 1–70.

    Google Scholar 

  • Angevine, J. B., Time of neuron origin in the diencephalon of the mouse: An autoradiographic study. J. Camp. Neurol, 1970, 139, 129–188.

    Google Scholar 

  • Angevine, J. B., and Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex of the mouse. Nature, 1961, 192, 766–765.

    Google Scholar 

  • Annis, R. C., and Frost, B. Human visual ecology and orientation anisotropics in acuity. Science, 1973, 182, 729.

    Google Scholar 

  • Aronson, E., and Rosenblum, S., Space perception in early infancy: Perception within a common auditory-visual space. Science, 1971, 172, 1161–1163.

    Google Scholar 

  • Atkinson, J., Braddick, O., and Braddick, F. Acuity and contrast sensitivity of infant vision. Nature, 1974, 247, 403.

    Google Scholar 

  • Attardi, D. G., and Sperry, R. W. Preferential selection of central pathways by regenerating optic fibers. Exp. Neurol, 1963, 7, 46–64.

    Google Scholar 

  • Baker, F. H., Grigg, P., and Von Noorden, G. K. Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res., 1974, 66, 185–208.

    Google Scholar 

  • Banks, M. S., Aslin, R. N., and Letson, R. D. Sensitive period for the development of human binocular vision. Science, 1975, 190, 675–677.

    Google Scholar 

  • Barlow, H. B. Visual experience and cortical development. Nature, 1975, 258, 199–204.

    Google Scholar 

  • Barlow, H. B., and Hill, R. M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science, 1963, 193, 421–422.

    Google Scholar 

  • Barlow, H. B., and Pettigrew, J. D., Lack of specificity of neurons in the visual cortex of young kittens. J. Physiol (London), 1971, 218, 98–100.

    Google Scholar 

  • Barlow, H. B., Blakemore, C., and Pettigrew, J. P. The neural mechanism of binocular depth discrimination. J. Physiol (London), 1967, 193, 327–342.

    Google Scholar 

  • Baxter, B. L. Effect of visual deprivation during postnatal maturation on the electroencephalogram of the cat. Exp. Neurol, 1966, 14, 224–237.

    Google Scholar 

  • Berman, N., and Daw, N. W. Comparison of the critical periods for monocular and directional deprivation in cats. J. Physiol (London), 1977, 265, 249–259.

    Google Scholar 

  • Berman, N., and Sterling, P., Cortical suppression of the retino-collicular pathway in the monocularly deprived cat. J. Physiol (London), 1976, 255, 263–273.

    Google Scholar 

  • Bernstein, M. H., Kessen, W., and Weiskopf, S. The categories of hue in infancy. Science, 1976, 191, 201–202.

    Google Scholar 

  • Berry, M., and Rogers, A. W. The migration of neuroblasts in the developing cerebral cortex. J. Anat. (London), 1965, 99, 691–709.

    Google Scholar 

  • Blake, R., Crawford, M. L. J., and Hirsch, H. V. B. Consequences of alternating monocular deprivation on eye alignment and convergence in cats. Invest. Opthalmol, 1974, 13, 121–126.

    Google Scholar 

  • Blakemore, C. Developmental factors in the formation of feature extracting neurons. In F. O. Schmitt and F. G. Worden (eds.). The Neurosciences: Third Study Program. MIT Press, Cambridge, Mass., 1974.

    Google Scholar 

  • Blakemore, C. Development of the mammalian visual system. Br. Med. Bull, 1974, 30(2), 152–157.

    Google Scholar 

  • Blakemore, C. The conditions required for the maintenance of binocularity in the kitten’s visual cortex. J. Physiol (London), 1976, 261, 423–444.

    Google Scholar 

  • Blakemore, C., and Cooper, G. F. Development of the brain depends on the visual environment. Nature, 1970, 228, 447–478.

    Google Scholar 

  • Blakemore, C., and Van Sluyters, R. C. Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period. J. Physiol (London), 1974, 237, 195–216.

    Google Scholar 

  • Blakemore, C., and Van Sluyters, R. C. Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol (London), 1975, 248, 663–716.

    Google Scholar 

  • Blasdel, G. G., Mitchell, D. E., Muir, D. W., and Pettigrew, J. D. A physiological and behavioral study in cats of the effects of early visual experience with contours of a single orientation. J. Physiol (London), 1977, 265, 615–636.

    Google Scholar 

  • Bloom, E. M., and Tompkins, R. Selective reinnervation in skin rotation grafts in Rana pipiens, J. Exp. Zool, 1976, 195, 237–246.

    Google Scholar 

  • Bower, T. G. R. Development in Infancy. Freeman, San Francisco, 1974.

    Google Scholar 

  • Bower, T. G. R., Broughton, J. M., and Moore, M. K. The co-ordination of vision and touch in infancy. Percept. Psychophys., 1970a, 8, 51–53.

    Google Scholar 

  • Bower, T. G. R., Broughton, J. M., and Moore, M. K. Demonstration of intention in the reaching behavior of neonate humans. Nature, 1970b, 228, 679–681.

    Google Scholar 

  • Bradley, R. M., and Mistretta, C. M. Fetal sensory receptors. Physiol. Rev., 1975, 55, 352–382.

    Google Scholar 

  • Brown, D. L., and Salinger, W. L., Loss of X-cells in lateral geniculate nucleus with monocular paralysis: Neural plasticity in the adult cat. Science, 1975, 189, 1011–1012.

    Google Scholar 

  • Brückner, G., Vladislav, M., and Biesold, D., Neurogenesis in the visual system of the rat: An autoradiographic investigation. J. Comp. Neurol, 1976, 166, 245–256.

    Google Scholar 

  • Buisseret, P., and Imbert, M. Responses of neurons in the striate cortex observed in normal and dark- reared kittens during post-natal life. J. Physiol. (London), 1974, 246, 98–99P.

    Google Scholar 

  • Buisseret, D., and Imbert, M. Visual cortical cells: Their developmental properties in normal and dark- reared kittens. J. Physiol. (London), 1976, 255, 511–525.

    Google Scholar 

  • Caviness, V. S., and Sidman, R. L. Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice. J. Comp. Neurol, 1973, 148, 141–151.

    Google Scholar 

  • Chow, K. L., and Spear, P. D. Morphological and functional effects of visual deprivation on the rabbit visual system. Exp Neurol, 1972, 34, 409–433.

    Google Scholar 

  • Chow, K. L., and Stewart, D. L. Reversal of structural and functional effects of long-term visual deprivation in cats. Exp. Neurol, 1972, 34, 409–433.

    Google Scholar 

  • Chow, K. L, Masland, R. H., and Stewart, D. L. Receptive field characteristics of striate cortical neurons in the rabbit. Brain Res., 1971, 33, 337–352.

    Google Scholar 

  • Cowan, W. M. Neuronal death as a regulative mechanism in the control of cell numbers in the nervous system. In M. Rockstein (ed.), Development and Aging in the Nervous System. Academic Press, New York, 1973, pp. 19–34.

    Google Scholar 

  • Cowan, W. M., Martin, A. H., and Wenger, E. Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J. Exp. Zool, 1968, 169, 71–92.

    Google Scholar 

  • Creutzfeld, O. D., and Heggelund, P. Neural plasticity in visual cortex of adult cats after exposure to visual patterns. Science, 1975, 188, 1025–1027.

    Google Scholar 

  • Cuschieri, A., and Bannister, L. H. The development of the olfactory mucosa in the mouse: Light microscopy. J. Anal. (London), 1975, 119, 277–284.

    Google Scholar 

  • Cynader, M., and Chernenko, G. Abolition of direction selectivity in the visual cortex of the cat. Science, 1976, 193, 504–505.

    Google Scholar 

  • Cynader, M., Berman, N., and Hein, A., Cats reared in stroboscopic illumination: Effects on receptive fields in visual cortex. Proc. Natl Acad. Sci. (USA), 1973, 70, 1353–1354.

    Google Scholar 

  • Cynader, M., Berman, N., and Hein, A., Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus. Exp. Brain Res., 1975, 22, 267–280.

    Google Scholar 

  • Cynader, M., Berman N., and Hein, A. Recovery of function in cat visual cortex following prolonged deprivation. Exp. Brain. Res., 1976, 25, 139–156.

    Google Scholar 

  • Daw, N. W., and Wyatt, H. J. Kittens reared in a unidirectional environment: Evidence for a critical period. J. Physiol (London), 1976, 257, 155–170.

    Google Scholar 

  • Dayton, G. O., Jones, M. H., Aiu, P., Rawson, R. A., Steele, B., and Rose, M., Developmental study of coordinated eye movements in the human infant. I. Visual acuity in the newborn human: a study based on induced optokinetic nystagmus recorded by electro-oculography. Arch. Ophthalmol, 1964b, 71, 865–870.

    Google Scholar 

  • Dayton, G. O., Jones, M. H., Steele, B., and Rose, M., Developmental study of co-ordinated eye movements in the human infant. II. An electro-oculographic study of the fixation reflex in the newborn. Arch. Ophthalmol, 1964, 71, 871–875.

    Google Scholar 

  • Denney, D., Baumgartner, G., and Adoriani, C. Responses of cortical neurons to stimulation of the visual afferent radiations. Exp. Brain Res., 1968, 6, 265–272.

    Google Scholar 

  • Dews, P. B., and Wiesel, T. N., Consequences of monocular deprivation on visual behavior in kittens. J. Physiol (London), 1970, 206, 437–455.

    Google Scholar 

  • Dobson, V. Spectral sensitivity of the 2-month infant as measured by the visually evoked cortical potential. Vision Res., 1976, 16, 367–374.

    Google Scholar 

  • Doris, J., and Cooper, L., Brightness discrimination in infancy. J. Exp. Child Psychol, 1966, 3, 31–39.

    Google Scholar 

  • Dowling, J. E. Organization of vertebrate retinas. Invest. Ophthalmol, 1970, 9, 655–680.

    Google Scholar 

  • Engen, T., Lipsitt, L. P., and Kaye, H. Olfactory responses and adaptation in the human neonate. J. Comp. Physiol Psychol, 1963, 56, 73–77.

    Google Scholar 

  • Fantz, R. L. The origin of form perception. Sci. Am., 1961, 204, 66–72.

    Google Scholar 

  • Fantz, R. L. Ontogeny of perception. In A. M. Schrier and H. F. Harlow (eds.), Behavior of Nonhuman Primates: Modern Research Trends, Vol. 2. Academic Press, New York, 1965, pp. 365–403.

    Google Scholar 

  • Fantz, R. L. Pattern discrimination and selective attention as determinants of perceptual development from birth. In A. H. Kidd and J. L. Rivoire (eds.). Perceptual Development of Children. 1966, International Universities Press, New York, pp. 143–173.

    Google Scholar 

  • Fantz, R. L. Visual perception and experience in early infancy: A look at the hidden side of behavior development. In (H. W. Stevenson et al, eds.). Early Behavior: Comparitive and Developmental Approaches. Wiley, New York, 1967, pp. 181–224.

    Google Scholar 

  • Farbman, A. I. Development of the taste bud. In L. M. Biedler (ed.). Handbook of Sensory Physiology, Vol. IV: Chemical Senses, Part 2. Springer, New York, 1971, pp. 51–62.

    Google Scholar 

  • Fifkova, E. The effect of monocular deprivation on the synaptic contacts of the visual cortex. J. Neurobiol, 1970, 1, 285–295.

    Google Scholar 

  • Fifkova, E. Changes of axosomatic synapses in the visual cortex of monocularly deprived rats. J. Neurobiol, 1971, 2, 61–71.

    Google Scholar 

  • Fitch, M. H., Development of visuomotor behaviors following monocular and binocular patterned visual deprivation in the cat. Thesis, University of California at Riverside, 1971.

    Google Scholar 

  • Foley, J. P., Jr. Two year development of a rhesus monkey (Macaca muktta) reared in isolation. J. Genet. Psychol, 1935, 47, 73–97.

    Google Scholar 

  • Freeman, D. N., and Marg, E. Visual acuity development coincides with the sensitive period in kittens. Nature, 1975, 234, 614–615.

    Google Scholar 

  • Freeman, R. D., and Pettigrew, J. D. Alteration of visual cortex from environmental asymmetries. Nature, 1973, 246, 359–360.

    Google Scholar 

  • Freeman, R. D., Mitchell, D. E., and Millodot, M. A neural effect of partial visual deprivation in humans. Science, 1972, 173, 1384–1386.

    Google Scholar 

  • Fukuda, Y., and Stone, J. Retinal distribution and central projections of Y-, X- and W-cells of the cat’s retina. J. Neurophysiol, 1974, 37, 749–772.

    Google Scholar 

  • Ganz, L. Orientation in visual space by neonates and its modification by visual deprivation. In A. H. Riesen (ed.), The Developmental Neuropsychology of Sensory Deprivation. Academic Press, New York, 1975, pp. 169–210.

    Google Scholar 

  • Ganz, L., and Fitch, M. The effect of visual deprivation on perceptual behavior. Exp. Neurol, 1968, 22, 638–660.

    Google Scholar 

  • Ganz, L, Hirsch, H. V. B., and Tieman, S. B. The nature of perceptual deficits in visually deprived cats. Brain Res., 1972, 44, 547–568.

    Google Scholar 

  • Gaze, R. M. The Formation of Nerve Connections. Academic Press, New York, 1970.

    Google Scholar 

  • Gaze, R. M., and Keating, M. J. The visual system and neuronal specificity. Nature (London), 1972, 237, 375–378.

    Google Scholar 

  • Gibson, E. J., and Walk, R. D. The "visual chff." Scl Am., 1960, 202, 64–71.

    Google Scholar 

  • Globus, A., and Scheibel, A. Synaptic loci on visual cortical neurons of the rabbit: The specific afferent radiation. Exp. Neurol, 1967a, 18, 116–131.

    Google Scholar 

  • Globus, A., and Scheibel, A. The effect of visual deprivation on cortical neurons: A Golgi study. Exp.,Neurol, 1967, 19, 331–345.

    Google Scholar 

  • Globus, A., Rosenzweig, M. R., Bennet, E. L., and Diamond, M. C. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J. Comp. Physiol Psychol, 1973, 82, 175–181.

    Google Scholar 

  • Glucksmann, A. Cell death in normal vertebrate ontogeny. Biol Rev., 1951, 26, 59–86.

    Google Scholar 

  • Goodman, L. Effect of total absence of function on the optic system of rabbit. Am J . Physiol, 1932, 100, 46–63.

    Google Scholar 

  • Gorman, J. J., Cogan, D. G., and Gellis, S. S., Apparatus for grading visual acuity of infants on basis of optokinetic nystagmus. Pediatrics, 1957, 19, 1088–1092.

    Google Scholar 

  • Gregory, R. L., and Wallace, J. G. Recovery from early blindness: A case study. Exp. Psychol Soc. Monogr., 1963, No. 2.

    Google Scholar 

  • Grobstein, P., and Chow, K. L. Receptive field development and individual experience. Science, 1975, 190, 352–358.

    Google Scholar 

  • Grobstein, P., Chow, K. L., and Fox, P. C. Development of receptive fields in rabbit visual cortex: Changes in time course due to delayed eye-opening. Proc. Natl Acad. Sci. (USA), 1975, 72, 1543–1545.

    Google Scholar 

  • Guillery, R. W., Binocular competition in control of geniculate cell growth. J. Comp. Neurol, 1972, 144, 117–127.

    Google Scholar 

  • Guillery, R. W. The effect of lid suture on the growth of cells in the dorsal lateral geniculate nucleus of kittens. J. Comp. Neurol, 1973, 148, 417–422.

    Google Scholar 

  • Guillery, R. W., and Stelzner, D. J. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol, 1970, 139, 413–422.

    Google Scholar 

  • Guth, L. Degeneration and regeneration of taste buds. In L. M. Biedler (ed.). Handbook of Sensory Physiology, Vol. IV: Chemical Senses, Part 2. Springer, New York, 1971, pp. 63–74.

    Google Scholar 

  • Hamasaki, D. I., and Winters, R. W. Intensity-response functions of visually deprived LGN neurons in cats. Vision Res., 1973, 13, 925–936.

    Google Scholar 

  • Hamasaki, D. I., Rackensperger, W., and Vesper, J. Spatial organization of normal and visually deprived units in the lateral geniculate nucleus of the cat. Vision Res., 1972, 12, 843–854.

    Google Scholar 

  • Haynes, H., White, B. L., and Held, R. Visual accommodation in human infants. Science, 1965, 148, 528–530.

    Google Scholar 

  • Hein, A. Recovering spatial motor co-ordination after visual cortex lesions. In D. Hamburg (ed.). Perception and Its Disorders. Research Publications of the Association for Research in Nervous Mental Disease, Vol. 48. Williams and Wilkins, Baltimore, 1970.

    Google Scholar 

  • Held, R., and Hein, A., Movement-produced stimulation in the development of visually guided behavior. J. Comp. Physiol Psychol, 1963, 36, 872–876.

    Google Scholar 

  • Hershenson, M., Visual discrimination in the human newborn. J. Comp. Physiol Psychol, 1964, 58, 270–276.

    Google Scholar 

  • Hershenson, M. Development of the perception of form. Psychol Bull, 1967, 57, 326–336.

    Google Scholar 

  • Hicks, S. P., and D’Amato, C. J. Cell migrations to the isocortex in the rat. Anat. Ree., 1968, 619–634.

    Google Scholar 

  • Hinds, J. W., Early neuron differentiation in the mouse olfactory bulb. I. light microscopy. J. Comp. Neurol, 1972a, 146, 233–252.

    Google Scholar 

  • Hinds, J. W., Early neuron differentiation in the mouse olfactory bulb. II. Elearon microscopy. J. Comp. Neurol, 1972b, 146, 253–276.

    Google Scholar 

  • Hines, M. The development and regression of reflexes, postures and progression in the young macaque. Contrib. Embryol Carnegie Inst. (Washington, D.C.), 1942, 30, 153–209.

    Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N. Visual experience modifies distribution of horizontally oriented receptive fields in cats. Science, 1970, 168, 869–871.

    Google Scholar 

  • Hoffman, K. P., and Cynader, M. Recovery in the LGN of the cat after early visual deprivation. Brain Res., 1975, 85–179.

    Google Scholar 

  • Hoffman, K. P., and Sherman, S. M., Effects of early monocular deprivation on visual input to cat superior coUiculus. J. Neurophysiol, 1974, 37, 1276–1286.

    Google Scholar 

  • Hoffman, K. P., and Sherman, S. M., Effects of early binocular deprivation on visual input to cat superior colliculus. J. Neurophysiol, 1975, 38, 1049–1059.

    Google Scholar 

  • Hoffman, K. P., and Stone, J., Conduction velocity of afferents to cat visual cortex: A correlation with cortical receptive field properties. Brain Res., 1971, 52, 460–466.

    Google Scholar 

  • Hoffman, K. P., and Stone, J., Central terminations of W-, X- and Y-type ganglion cells from cat retina. Brain Res., 1973, 49, 500–501.

    Google Scholar 

  • Hoffman, K. P., Stone, J., and Sherman, S. M. Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol, 1972, 35, 518–531.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol (London), 1962, 160, 106–154.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol, 1963, 26, 944–1002.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol, 1965a, 28, 229–289.

    Google Scholar 

  • Hubel, D.H., and Wiesel, T. N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol, 1965b, 28, 1041–1059.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol (London), 1970, 206, 419–436.

    Google Scholar 

  • Imbert, M., and Buisseret, P. Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Exp. Brain Res., 1975, 22, 25–36.

    Google Scholar 

  • Jacobson, M. Development of neuronal specificity in retinal ganglion cells of Xenopus. Dev. Biol, 1968, 17, 202–218.

    Google Scholar 

  • Jacobson, M. DeveLopniental Neurobiology. Holt, Rinehart and Winston, New York, 1970.

    Google Scholar 

  • Jacobson, M., and Baker, R. E., Development of neuronal connections with skin grafts in frogs: Behavioral and electrophysiological studies. J. Comp. Neurol, 1969, 137, 121–142.

    Google Scholar 

  • Karmel, B. Z., Miller, P. N., Dettweiler, L., and Anderson, G. Texture density and normal development of visual depth avoidance. Dev. Psychobiol, 1970, 3, 73–90.

    Google Scholar 

  • Keating, M. J. The formation of visual neuronal connections: An appraisal of the present status of the theory of neuronal specificity. In G. Gottlieb (ed.), Studies on the Development of Behavior and the Nervous System, Vol. 3: Neural and Behavioral Specificity. Academic Press, New York, 1976, pp. 59–110.

    Google Scholar 

  • Kelly, J. P., and Cowan, W. M., Studies on the development of the chick optic tectum. III. Effects of early eye removal. Brain Res., 1972, 42, 263–288.

    Google Scholar 

  • Leehey, S. C., Moskowitz-Cook, A., Brill, S., and Held, R. Orientational anisotrophy in infant vision. Science, 1975, 190, 900–901.

    Google Scholar 

  • LeVay, S., and Ferster, D. Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. Comp. Neurol, 1977, 172, 563–584.

    Google Scholar 

  • LeVay, S., and Gilbert, C. D. Laminar patterns of geniculocortical projection in the cat. Brain Res., 1976, 113, 1–19.

    Google Scholar 

  • Levine, R. L., and Jacobson, M. Deployment of optic nerve fibers is determined by positional markers in the frog’s tectum. Exp. Neurol, 1974, 43, 527–538.

    Google Scholar 

  • Lockshin, R. A., and Beaulation, J. Programmed cell death. Life Sci, 1975, 13, 1549–1565.

    Google Scholar 

  • Lund, J. S., and Lund, R. D. The effects of varying periods of visual deprivation on synaptogenesis in the superior colliculus of the rat. Brain Res., 1972, 42, 21–32.

    Google Scholar 

  • Maffei, L., and Bisti, S. Binocular interaction in strabismic kittens deprived of vision. Science, 1976,191, 579–580.

    Google Scholar 

  • Marg, E., Freeman, D. N., Peltzman, P., and Goldstein, P. J., Visual acuity development in human infants: Evoked potential measurements. Invest. Ophthalmol, 1976, 13, 150–153.

    Google Scholar 

  • Marin-Padilla, M. Early postnatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z.Anat. Entwickl-Gesch., 1971, 134, 117–145.

    Google Scholar 

  • Mathers, L. H., Chow, K. L., Spear, P. D., and Grobstein, P. Ontogenesis of receptive fields in the rabbit striate cortex. Exp. Brain Res., 1974, 19, 20–35.

    Google Scholar 

  • McGinnis, J. M. Eye movements and optic nystagmus in early infancy. Genet. Psychol Monogr., 1930, 8, 321–430.

    Google Scholar 

  • Miner, N. Integumental specification of sensory fibers in the development of cutaneous local sign. J. Comp. Neurol, 1956, 105, 161–170.

    Google Scholar 

  • Mitchell, D. E., and Wilkinson, F. The effect of early astigmatism on the visual resolution of gratings. J. Physiol (London), 1974, 243, 729–756.

    Google Scholar 

  • Mitchell, D. E., Freeman, R. D., Millodot, M., and Haegerstrom, G. Meridional amblyopia: Evidence for modification of the human visual system by early visual experience. Vision Res., 1973, 13, 535–558.

    Google Scholar 

  • Mitchell, D. E., Giffin, F., Wilkinson, F., Anderson, P., and Smith, M. L. Visual resolution in young kittens. Vision Res., 1976, 16, 363–366.

    Google Scholar 

  • Mize, R. R., and Murphy, E. H. Selective visual experience fails to modify receptive field properties of rabbit cortex neurons. Science, 1973, 180, 320–323.

    Google Scholar 

  • Mize, R. R., and Murphy, E. H. Alterations in receptive field properties of superior colliculus cells by visual cortex ablation in infant and adult cats. J. Comp. Neurol, 1976, 168, 393–424.

    Google Scholar 

  • Morest, D. K. The differentiation of cerebral dendrites: A study of the post migratory neuroblast in the medical trapezoid body. Z.Entwickl-Gesch., 1969ß, 128, 271–289.

    Google Scholar 

  • Morest, D. R. The growth of dendrites in the mammalian brain. Z.Entwickl-Gesch., 1969a, 128, 290–317.

    Google Scholar 

  • Movshon, A. J., Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex. J. Physiol (London), 1976, 261, 125–174.

    Google Scholar 

  • Muir, D. W., and Mitchell, D. E. Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation. Science, 1973, 180, 420–422.

    Google Scholar 

  • Myer, R. L., and Sperry, R. W., Retinotectal specificity: Chemoaffinity theory. In G. Gotüieb (ed.), Studies on the Development of Behavior and the Nervous System, Vol. 3: Neural and Behavioral Specificity. Academic Press, New York, 1976, pp. 111–149.

    Google Scholar 

  • Nealy, S. M., and Riley, D. A. Loss and recovery of visual depth in dark reared rat. Am. J. Psychol, 1963, 76, 329–333.

    Google Scholar 

  • Nikara, T., Bishop, P. O., and Pettigrew, J. D., Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res., 1968, 6, 353–372.

    Google Scholar 

  • Norman, J. L., Daniels, J. D., and Pettigrew, J. D. Absence of surround antagonism in unit responses of the LGN in young kittens.Neurosci. Abstr., 1975, I, 88.

    Google Scholar 

  • Norton, T. T., Receptive-field properties of superior colliculus cells and development of visual behavior in kittens. J. Neurophysiol, 1974, 37, 674–690.

    Google Scholar 

  • Noton, D., and Stark, L. Eye movements and visual perception. Sci. Am., 1971, 224, 34–43.

    Google Scholar 

  • Oakley, B. On the specification of neurons in the rat tongue. Brain Res., 1974, 75, 85–96.

    Google Scholar 

  • Oakley, B., and Benjamin, R. M. Neural mechanisms of taste. Physiol. Rev., 1966, 46, 173–211.

    Google Scholar 

  • Olmstead, J. M. D. The result of cutting the seventh cranial nerve in Ameiurus nebulosus (Lesueur). J. Exp. Zool, 1920, 31, 369–401.

    Google Scholar 

  • Olson, C. R., and Freeman, R. D. Progressive changes in kitten striate cortex during monocular vision. J. Neurophysiol, 1975, 38, 26–32.

    Google Scholar 

  • Olson, C. R., and Pettigrew, J. D. Single units in visual cortex of kittens reared in stroboscopic illumination. Brain Res., 1974, 70, 109–204.

    Google Scholar 

  • Orbach, J., and Miller, M. H. Visual performance of infrahuman primates reared in an intermittently illuminated room. Vision Res., 1969, 9, 713–716.

    Google Scholar 

  • Ordy, J. M., Massopust, L. C., and Wolin, L. R., Postnatal development of the retina, ERG and acuity in the rhesus monkey. Exp. Neurol., 1962, 5, 364–382.

    Google Scholar 

  • Ordy, J. M., Latanick, A., Samorajski, T., and Massopust, L. C. Visual acuity in newborn primate infants. Proc. Soc. Exp. Biol. Med., 1964, 115, 677–680.

    Google Scholar 

  • Palmer, L. A., and Rosenquist, A. C. Visual receptive fields of single striate cortical units projecting to the superior coUiculus in the cat. Brain Res., 1974, 67, 27–42.

    Google Scholar 

  • Peck, C. K., and Blakemore, C. Modification of single neurons in the kitten’s visual cortex after brief periods of monocular vision experience. Exp. Brain Res., 1975, 22, 57–68.

    Google Scholar 

  • Peepies, D. P., and Teller, D. Y. Color vision and brightness discrimination in two-month-old human infants. Science, 1975, 189, 1102–1103.

    Google Scholar 

  • Pettigrew, J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. J. Physiol. (London), 1974, 257, 49–74.

    Google Scholar 

  • Pettigrew, J. D., and Freeman, R. D., Visual experience without lines: Effect on developing cortical neurons. Science, 1973, 182, 599–601.

    Google Scholar 

  • Pettigrew, J. D., and Garey, L. J. Selective modification of single neuron properties in the visual cortex of kittens. Brain Res., 1974, 66, 160–164.

    Google Scholar 

  • Pettigrew, J. D., Nikara, T., and Bishop, P. O. Responses to moving slits by single units in cat striate cortex. Exp. Brain Res., 1968, 6, 373–390.

    Google Scholar 

  • Pettigrew, J. D., Olson, C., and Barlow, H. B., Kitten visual cortex: Short-term stimulus-induced changes in connectivity. Science, 1973a, 180, 1202–1203.

    Google Scholar 

  • Pettigrew, J. D., Olson, C., and Hirsch, H. V. B., Cortical effect of selective visual experience: Degeneration or re-organization? Brain Res., 1973b, 51, 345–351.

    Google Scholar 

  • Ramon y Cajal, S., The Mechanism of Development of Intraepithelial Sensoij and Special Sense Newe Terminations. Studies on Vertebrate Neurogenesis. Thomas, Springfield, Ill., 1929.

    Google Scholar 

  • Rasch, E., Swift, H., and Riesen, A. H. Altered structure and composition of retinal cells in dark reared mammals. Exp. Cell Res., 1961, 25, 348–363.

    Google Scholar 

  • Riesen, A. H. The development of visual perception in man and chimpanzee. Science, 1947, 106, 107–108.

    Google Scholar 

  • Riesen, A. H., Plasticity of behavior: Psychological aspects. In H. F. Harlow and C. N. Woolsey (eds.), Biological and Biochemical Bases of Behavior. University of Wisconsin Press, Madison, Wis., 1958.

    Google Scholar 

  • Riesen, A. H., Studying perceptual development using the technique of sensory deprivation. J. Nerv. Ment. Dis., 1961, 132, 21–25.

    Google Scholar 

  • Riesen, A. H. Sensory deprivation. In Stellar and J. M. Sprague (eds.). Progress in Physiological Psychology, Vol. 1. Academic Press, New York, 1966, pp. 117–147.

    Google Scholar 

  • Riesen, A. H., Kurke, M. I., and Meilinger, J. C. Interocular transfer of habits learned monocularly in visually naive and visually experienced cats. J. Comp. Physiol. Psychol, 1953, 46, 166–172.

    Google Scholar 

  • Riesen, A. H., and Zilbert, D. E. Behavioral consequences of variations in early sensory environments. In A. H. Riesen (ed.). The Developmental Neuropsychology of Sensory Deprivation. Academic Press, New York, 1975, pp. 211–252.

    Google Scholar 

  • Rose, G. H., and EUingson, R. J., Ontogenesis of evoked responses. In W. A. Himwich (ed.), Developmental Neurobiology. Thomas, Springfield, Ill., 1970, pp. 393–440.

    Google Scholar 

  • Rosenquist, A. C., and Palmer, L. A., Visual receptive field properties of cells of the superior colliculus after cortical lesions in the cat. Exp. Neurol, 1971, 33, 629–652.

    Google Scholar 

  • Ryugo, D. K., Ryugo, R., and Killackey, H. P. Changes in pyramidal cell spine density consequent to vibrissae removal in the newborn rat. Brain Res., 1975, 96, 82–87.

    Google Scholar 

  • Ryugo, R., Ryugo, D. K., and Killackey, H. P. Differential effect of enucleation on two populations of layer V pyramidal cells. Brain Res., 1975, 88, 554–559.

    Google Scholar 

  • Salapatek, P. Visual scanning of geometric figures by the human newborn. J. Comp. Physiol. Psychol., 1968, 66, 247–258.

    Google Scholar 

  • Salapatek, P., and Kessen, W., Visual scanning of triangles by the human newborn. J. Exp. Child Psychol, 1966, 3, 155–167.

    Google Scholar 

  • Saunders, J. W. Death in embryonic systems. Science, 1966, 154, 604–612.

    Google Scholar 

  • Schapiro, S., and Vukovich, V. R., Early experience effects on cortical dendrites: A proposed model for development. Science, 1970, 167, 292–294.

    Google Scholar 

  • Schechter, P. B., and Murphy, E. H. Brief monocular visual experience and kitten cortical binocularity. Brain Res., 1976, 109, 165–168.

    Google Scholar 

  • Shaw, C., Yinon, U., and Auerbach, E. Diminution of evoked neuronal activity in the visual cortex of pattern deprived rats. Exp. Neurol, 1974, 43, 42–50.

    Google Scholar 

  • Sher, A. E. The embryonic and postnatal development of the inner ear of the mouse. Acta Oto-Laryngol Suppl, 1971, 285, 1–77.

    Google Scholar 

  • Sherk, H., and Stryker, M. P., Quantitative study of cortical orientation selectivity in visually inexperienced kitten. J. Neurophysiol, 1976, 39, 63–70.

    Google Scholar 

  • Sherman, S. M., and Sanderson, K. J. Binocular interaction of cells ol the dorsal lateral geniculate nucleus of visually deprived cats. Brain Res., 1972, 37, 126–131.

    Google Scholar 

  • Sherman, S. M., and Stone, J. Physiological normality of the retina in visually deprived cats. Brain Res., 1973, 60, 224–230.

    Google Scholar 

  • Sherman, S. M., Hoffman, K. P., and Stone, J., Loss of specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J. Neurophysiol, 1972, 35, 532–541.

    Google Scholar 

  • Sherman, S. M., Guillery, R. W., Kaas, J. H. and Sanderson, K. J. Behavioral, electrophysiological, and morphological studies of binocular competition in the development of geniculo-cortical pathways of cats. J. Comp. Neurol, 1974, 158, 1–18.

    Google Scholar 

  • Shimada, M., and Langman, J. Cell proliferation migration, and differentiation in the cerebral cortex of the golden hamster. J. Comp. Neurol, 1970, 139, 227–244.

    Google Scholar 

  • Shlaer, R., Shift in binocular disparity causes compensatory changes in the cortical structure of kittens. Science, 1971, 173, 638–641.

    Google Scholar 

  • Sidman, R. L. Autoradiographic methods and principles for study of the nervous system with thymidine-3H. In W. J. H. Nauta and S. O. E. Ebbesson (eds.). Contemporary Research Methods in Neuroanatomy. Springer, New York, 1970, pp. 252–274.

    Google Scholar 

  • Singer, W. Modification of orientation and direction selectivity of cortical cells in kittens with monocular vision. Brain Res., 1976, 118, 460–468.

    Google Scholar 

  • Singer, W., Tretter, F., and Cynader, M., Organization of cat striate cortex: A correlation of receptive field properties with afferent and efferent connections. J. Neurophysiol, 1975, 38, 1080–1098.

    Google Scholar 

  • Smith, D. E., Observations on the postnatal development of Clarke’s column in the kitten. J. Comp. Neurol, 1969, 135, 263–274.

    Google Scholar 

  • Smith, D. E. The effect of deafferentation on the postnatal development of Clark’s nucleus in the kitten: A Golgi study. Brain Res., 1974, 74, 119–130.

    Google Scholar 

  • Sosula, L., and Glow, P. H., Increase in the number of synapses in the inner plexiform layer of light deprived rat retinae: Quantitative electron microscopy. J. Comp. Neurol, 1971, 141, 427–452.

    Google Scholar 

  • Sperry, R. W. Optic nerve regeneration with return of vision in anurans. J. Neurophysiol, 1944, 7, 57–69.

    Google Scholar 

  • Sperry, R. W. Mechanisms of neural maturation. In S. S. Stevens (ed.). Handbook of Experimental Psychology. Wiley, New York, 1951, pp. 236–280.

    Google Scholar 

  • Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. (USA), 1963, 50, 703–710.

    Google Scholar 

  • Stein, B. E., Labos, E., and Kruger, L., Sequence of changes in the properties of neurons of superior colliculus of the kitten during maturation. J. Neurophysiol, 1973, 36, 667–679.

    Google Scholar 

  • Sterling, P., and Wickelgren, B. G., Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol, 1969, 32, 1–15.

    Google Scholar 

  • Stewart, D. L., and Riesen, A. H., Adult versus infant brain damage: Behavioral and electrophysiological effects of striatectomy in adult and neonatal rabbits. In G. Newton and A. H. Riesen (eds.), Advances in Psychobiohgy, Vol. 1. Wiley, New York, 1972, pp. 171–211.

    Google Scholar 

  • Stone, J., Morphology and physiology of the geniculocortical synapse in the cat: The question of parallel input to the striate cortex. Invest. Ophthalmol, 1972, 11, 338–344.

    Google Scholar 

  • Stone, J., and Dreher, B., Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. NeurophysioL, 1973, 36, 551–567.

    Google Scholar 

  • Stone, J., and Fukuda, Y., Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. J. NeurophysioL, 1974, 37, 722–748.

    Google Scholar 

  • Stone, L. S., Functional polarization in retinal development and its re-establishment in regenerated retinae of rotated eyes. Proc. Sac. Exp. Biol. Med., 1944, 57, 13–14.

    Google Scholar 

  • Stone, L. S. Normal and reversed vision in transplanted eyes. Arch. Ophthalmol. (Chicago), 1953, 49, 28–35.

    Google Scholar 

  • Stryker, M. P., and Sherk, H., Modification of cortical orientation selectivity in the cat by restricted visual experience: A re-evaluation. Science, 1975, 190, 904–906.

    Google Scholar 

  • Tees, R. C., Effect of early visual restriction on later form discrimination in the rat. Can. J. Psychol, 1968, 22,294–301.

    Google Scholar 

  • Tinklepaugh, O. L., and Hartman, C. G. Behavior and maternal care of the newborn monkey (Macaca mulatta). J. Genet. Psychol, 1932, 40, 257–286.

    Google Scholar 

  • Tretter, F., Cynader, M., and Singer, W., Modification of direction selectivity of neurons in the visual cortex of kittens. Brain Res., 1975, 84, 143–149.

    Google Scholar 

  • Valverde, F., Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res., 1967, 3, 337–352.

    Google Scholar 

  • Valverde, F., Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res., 1968, 5, 274–292.

    Google Scholar 

  • Van Essen, D. C., and Kelly, J. P., Cell structure and function in the visual cortex of the cat. J. Physiol. (London), 1974, 238, 515–547.

    Google Scholar 

  • Van Hof, M. W. Orientation discrimination in normal and light-deprived rabbits. Docum. Ophthalmol, mi, 30, 299–311.

    Google Scholar 

  • Van Hof, M. W., and Kobayashi, K., Pattern discrimination in rabbits deprived of light for 7 months after birth. Exp. Neurol, 1972, 35, 551–557.

    Google Scholar 

  • Van Hof-Van Duin, J., Development of visuomotor behavior in normal and dark-reared cats. Brain Res., 1976, 104, 233–241.

    Google Scholar 

  • Van Sluyters, R. C., and Blakemore, C., Experimental creation of unusual neuronal properties in visual cortex of kitten. Nature, 1973, 246, 506–508.

    Google Scholar 

  • Van Sluyters, R. C., and Stewart, D. L., Binocular neurons of the rabbit’s visual cortex: Effects of monocular sensory deprivation. Exp. Brain Res., 1974, 19, 196–204.

    Google Scholar 

  • Vestal, B. M., and King, J. A., Relationship of age at eye opening to the first optokinetic response in deermice. Dev. Psychobiol, 1968, 1, 30–34.

    Google Scholar 

  • Vestal, B. M., and King, J. A., Effect of repeated testing on development of visual acuity in prairie deermice. Psychon. Sci, 1971, 25, 297–298.

    Google Scholar 

  • Vinnikov, Y. A., and Titova, L. A., The development of vertebrate sense organs. Prahl Sorr. Embriol (Leningrad), 1956, 89, 96.

    Google Scholar 

  • Vital-Durand, F., and Jeannerod, M., Maturation of the optokinetic response: Genetic and environmental factors. Brain Res., 1974, 71, 237–249.

    Google Scholar 

  • Von Noorden, G. K., Experimental amblyopia in monkeys: Further behavioral observations and clinical correlations. Invest. Ophthalmol, 1973, 12, 721–726.

    Google Scholar 

  • Von Noorden, G. K., Dowling, J. E., and Ferguson, D. C., Experimental amblyopia in monkeys: Behavioral studies of stimulus deprivation amblyopia. Arch. Ophthalmol, 1970, 84, 206–214.

    Google Scholar 

  • Von Senden, M., Space and Sight. Methuen, London, 1960.

    Google Scholar 

  • Walk, R. D., and Gibson, E. J., A comparative and analytic study of depth perception. Psychol Monogr., 1961, 75, 44.

    Google Scholar 

  • Walk, R. D., Gibson, E. J., and Tighe, T. J., Behavior of light and dark reared rats on the visual cliff. Science, 1957, 126, 80–81.

    Google Scholar 

  • Warkentin, J., An experimental study of the ontogeny of vision in the rabbit. Psychol Bull, 1937, 30, 542–543.

    Google Scholar 

  • Warkentin, J., and Smith, J. U., The development of visual acuity in the cat. J. Genet. Psychol, 1937, 50, 371–399.

    Google Scholar 

  • Watkins, D. W., and Sherman, S. M., Effects of binocular deprivation on cat striate cortex. Neurosci. Abstr., 1975, 1, 86.

    Google Scholar 

  • Weiskrantz, L., Sensory deprivation and the cat’s optic nervous system. Nature, 1958, 181, 1047–1050. 71

    Google Scholar 

  • Wertheimer, M. Psychomotor co-ordination of auditory-visual space at birth. Science 1961, 134, 1692.

    Google Scholar 

  • White, B. L., Castle, P., and Held, R., Observations on the development of visually directed reaching. Chll Dev., 1964, 55, 349–364.

    Google Scholar 

  • Wickelgren, B. G., and Sterling, P., Influence of visual cortex on receptive field properties in the superior colliculus of the cat. J. Neurophysiol, 1969, 32, 16–23.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol, 1963a, 26, 978–993.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol, 1963, 26, 1003–1017.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol, 1965a, 28, 1029–1040.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., Extent of recovery from the effeas of visual deprivation in kittens. J. Neurophysiol, 19656, 28, 1060–1072.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol, 1974, 158, 307–318.

    Google Scholar 

  • Wilson, J. R., and Sherman, S. M., Differential effects of early monocular deprivation on binocular and monocular segments of cat striate cortex. J. Neurophysiol, 1977, 40, 891–903.

    Google Scholar 

  • Wilson, P. D., and Riesen, A. H., Visual development in rhesus monkeys neonatally deprived of patterned light. J. Comp. Physiol Psychol, 1966, 61

    Google Scholar 

  • Wilson, P. D., Rowe, M. H., and Stone, J., Properties of relay cells in cat’s lateral geniculate nucleus: A comparison of W-cells with X- and Y-cells. J. Neurophysiol, 1976, 39, 1193–1209.

    Google Scholar 

  • Zelena, J., Development, degeneration and regeneration of receptor organs. In M. Singer and J. P. Schade (eds.), Mechanisms of Neural Recognition, Progress in Brain Research, Vol. 13. Elsevier, Amsterdam, 1964, pp. 175–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Cunningham, T.J., Murphy, E.H. (1978). Ontogeny of Sensory Systems. In: Masterton, R.B. (eds) Sensory Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2730-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2730-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2732-5

  • Online ISBN: 978-1-4684-2730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics