Skip to main content

Phylogeny of the Vertebrate Sensory Systems

  • Chapter

Abstract

Most of the sensory systems of vertebrates have an evolutionary history that stretches back to before the origin of the vertebrates themselves. If this long history were available for close inspection, a number of fundamental questions about the physiology of the senses and their primary behavioral contributions could be quickly answered and these answers could be expected to bring with them a kind of insight into sensory system function not possible to gain by experiment alone. Even as incompletely known as it now is, the evolutionary history of the sensory systems remains a source of new and relatively independent ideas about structure-function relationships that serve to augment the range of plausible hypotheses fueling direct physiological and behavioral experimentation (Tucker and Smith, 1976; Wever, 1976; Stebbins, 1970; Glickstein, 1976; Berkley, 1976). It is for this reason that the conclusions of the comparative and paleontological sciences are of particular value to those interested in the neural mechanisms of sensory integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E. D. Double representation of the feet in the sensory cortex of the cat. J. Physiol. (London), 1940, 98, 16.

    Google Scholar 

  • Allison, A. C. The morphology of the olfactory system in the vertebrates. Bioi. Rev., 1953, 28, 195–244.

    Google Scholar 

  • Allison, A. C., and Warwick, R. T. T. Quantitative observations on the olfactory system of the rabbit. Brain, 1949, 72, 186–197.

    Google Scholar 

  • Allman, J. Evolution of the visual system in the early primates. In J. M. Sprague and A. N. Epstein (eds.), Progress in Psychobiology and Physiological Psychology. Academic Press, New York, 1977, pp. 153.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res., 1971, 35, 89–106.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H. The organization of the second visual area (VII) in the owl monkey: A second order transformation of the visual hemifield. Brain Res., 1974, 76, 247–265.

    Google Scholar 

  • Allman, J. M., Kaas, J. H., and Lane, R. H. The middle temporal visual area (MT) in the bush baby, Galago senegalensis. Brain Res., 1973, 57, 197–202.

    Google Scholar 

  • Andres, K. H. Anatomy and ultra-structure of the olfactory bulb in fish, amphibians, reptiles, birds, and mammals. In G. E. W. Wolstenholme and J. Knight (eds.), Taste and Smellin Vertebrates. Churchill, London, 1970.

    Google Scholar 

  • Ariens Kappers, C. D., Huber, G. C., and Crosby, E. C. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Hafner, New York, 1936.

    Google Scholar 

  • Atema, J. Structure and functions of the sense of taste in the catfish (Ictalurusnatalis). Brain Behav. Evol., 1971, 4, 273–294.

    Google Scholar 

  • Baird, L L., Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav. Evol., 1974, 10, 11–36.

    Google Scholar 

  • Barlow, H. B., Hill, R. M., and Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (London), 1964, 173, 377–407.

    Google Scholar 

  • Barrington E. J. W., and Jefferies, R. P. S. (eds.). Protochordates: Symposium ofthe Zoological Society of London. Academic Press, London, 1975.

    Google Scholar 

  • Benjamin, R. M. Some thalamic and cortical mechanisms of taste. In Y. Zotterman (ed.), Olfaction and Taste. Macmillan, New York, 1963, pp. 309–329.

    Google Scholar 

  • Berkley, M. A. Some comments on visual acuity and its relation to eye structure. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotten (eds.), Evolution of Brain and Behavior in Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, N. J., 1976, pp. 73–88.

    Google Scholar 

  • Bertmar, G. The vertebrate nose, remarks on its structural and functional adaptation and evolution. Evolution, 1969, 23, 131–152.

    Google Scholar 

  • Bishop, G. H., Clare, M. H., and Landau, W. M. The relation of axon sheath thickness to fiber size in the central nervous system of vertebrates. Int. J. Neuro sci., 1971, 2, 69–78.

    Google Scholar 

  • Bombardieri, R. A., Jr., Johnson, J. L, Jr., and Campos, G. B., Species differences in mechanosensory projections from the mouth to the ventrobasal thalamus. J. Compo Neurol., 1975, 163, 41–64.

    Google Scholar 

  • Boord, R. L. The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci., 1969, 167, 186–198.

    Google Scholar 

  • Boord, R. L., and Karten, H. J. The distribution of primary lagenar fibers within the vestibular nuclear complex of the pigeon. Brain Behav. Evol., 1974, 10, 228–235.

    Google Scholar 

  • Boudreau, J. C. Neural encoding in cat geniculate ganglion tongue units. Chem. Senses Flavor, 1974, 1, 41–51.

    Google Scholar 

  • Brawer, J. R., Morest, D. K., and Kane, E. C. The neuronal architecture of the cochlear nucleus of the cat. J. Compo Neurol. 1974, 155, 251–300.

    Google Scholar 

  • Broadwell, R. D., Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs. J. Compo Neurol., 1975, 163, 329–346.

    Google Scholar 

  • Cain, W. S. Differential sensitivity for smell: “Noise” at the nose. Science, 1977, 195, 796–798.

    Google Scholar 

  • Cajal, S. R. Y. Histologie du Systente Nerveux de THomme et des Vertebres. Maloine, Paris, 1911.

    Google Scholar 

  • Capranica, R. R. Morphology and physiology of the auditory system. In R. Llinas and W. Precht (eds.), FrogNeurobiology. Springer-Verlag, New York, 1976, pp. 551–575.

    Google Scholar 

  • Casagrande, V. A., Harting, J. K., Hall, W. C., Diamond, LT., and Martin, G. F., Superior colliculus of the tree shrew: A structural and functional subdivision into superficial and deep structures. Science, 1972, 177, 444–447.

    Google Scholar 

  • Caspary, D. Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp. Neurol., 1972, 37, 131–151.

    Google Scholar 

  • Cowan, W. M., Gottlieb, D. L, Hendrickson, A. E., Price, J. L. and Woolsey, T. A. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res., 1972, 37, 21–51.

    Google Scholar 

  • Crescitellia, F., and Pollack, J. D., Color vision in the antelope ground squirrel. Science, 1965, 150, 1316–1318.

    Google Scholar 

  • Darian-Smith, L., The trigeminal system. In Handbook of Sensory Physiology, Vol. II: Somatosensory System. Springer-Verlag, New York, 1973, pp. 271–314.

    Google Scholar 

  • DeFina, A. V., and Webster, D. B., Projections of the intraotic ganglion to the medullary nuclei in the tegu lizard, Tupinambis nigropunctatus. Brain Behav. Evol., 1974, 10, 197–211.

    Google Scholar 

  • Diamond, I. T., Jones, E. G., and Powell, T. P. S. The projection of the auditory cortex upon the diencephalon and brainstem in the cat. Brain Res., 1969, 15, 305–340.

    Google Scholar 

  • Diamond, I. T., Snyder, M., Killackey, H., Jane, J., and Hall, W. C. Thalamocortical projections in the tree shrew (Tupaia glis). J. Compo Neurol., 1970, 139, 273–306.

    Google Scholar 

  • Doty, R. L. Mammalian Olfaction, ReproductiveProcesses and Behavior. Academic Press, New York, 1976.

    Google Scholar 

  • Dowling, J. Organization of vertebrate retinas. Invest. Ophthalmol., 1970, 9, 655–680.

    Google Scholar 

  • Dubin, M. The inner plexiform layer of the vertebrate retina: A quantitative and comparative study. J. Compo Neurol., 1970, 140, 479–505.

    Google Scholar 

  • Duke-Elder, S. The anatomy of the visual system. In S. Duke-Elder (ed.), System ofOphthalmology, Vol. 2. Kimpton, London, 1961.

    Google Scholar 

  • Dunn, J., and Matze, H. A. Efferent fiber connections of the marmoset (Oedipomidas oedipus) trigeminal nucleus caudalis. J. Compo Neurol., 1968, 133, 429–438.

    Google Scholar 

  • Easton, D. M. Garfish olfactory nerve: Easily accessible source of numerous long homogeneous nonmyelinated axons. Science, 1971, 172, 952–955.

    Google Scholar 

  • Ebbesson, S. O. E. Ascending axon degeneration following hemisection of the spinal cord in the tegu lizard (Tupinamhis nigropunctatus). Brain Res., 1967, 5, 178–206.

    Google Scholar 

  • Ebbesson, S. O. E. Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann. N.Y. Acad. Sci., 1969, 167, 80–101.

    Google Scholar 

  • Ebbesson, S. O. E. New insights into the organization of the shark brain. Compo Biochem. Physiol., 1972, 42, 121–129.

    Google Scholar 

  • Ebbesson, S. O. E. Morphology of the spinal cord. In R. Llinas and W. Precht (eds.), Frog Neurobiology. Springer-Verlag, New York, 1976, pp. 688–706.

    Google Scholar 

  • Ebbesson, S. O. E., and Northcutt, R. G. Neurology of anamniotic vertebrates. In R. B. Masterton et al. (eds.), Evolution of Brain and Behavior of Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, New Jersey, 1976, pp. 115–146.

    Google Scholar 

  • Ebbesson, S. O. E., and Schroeder, D. M. Connections ofthe nurse shark’s telencephalon. Science, 1971, 173, 254–256.

    Google Scholar 

  • Edwards, S. B., Rosenquist, A. C., and Palmer, L. A. An autoradiographic study of ventral lateral geniculate projections in the cat. Brain Res., 1974, 72, 282–287.

    Google Scholar 

  • Eleftheriou, B. E. (ed.). The Neurobiology ofthe Amygdala. Plenum, New York, 1972.

    Google Scholar 

  • Elliot Smith. G. Some problems relating to the evolution of the brain. Lancet, 1910, 1.

    Google Scholar 

  • Feng, A. S., and Capranica, R. R., Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bull frogs (Rana catesbeiana). J. Neurophysiol., 1976, 39, 871–881.

    Google Scholar 

  • Finger, T. E., Gustatory pathways in the bullhead catfish. I. Connection of the anterior ganglion. J. Compo Neurol., 1976, 165, 513–526.

    Google Scholar 

  • Fink, R. P., and Heimer, L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res., 1967, 4, 369–374.

    Google Scholar 

  • Foster, R. E. The ascending brainstem auditory pathway in a reptile, Iguana iguana. Anat. Rec., 1974, 178, 357.

    Google Scholar 

  • Foster, R. E. The organization of central acoustic pathways in a reptile, Iguana iguana. Ph.D. dissertation, Duke University, 1976.

    Google Scholar 

  • Fox, R., Lehmkuhle, S. W., and Westendorf, D. H. Falcon visual acuity. Science, 1976a, 192, 263–265.

    Google Scholar 

  • Fox, R., Lehmkuhle, S. W., and Bush, R. C. Stereoscopic vision in the falcon (Falco sparverius). Paper presented at Society for Neuroscience, Toronto, 1976b.

    Google Scholar 

  • Fuller, P. M. Projections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Braui Behao. Evol., 1974, 10, 157–169.

    Google Scholar 

  • Fuller, P. M., and Ebbesson, S. O. E. Central connections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Anat. Rec., 1973a, 175, 325.

    Google Scholar 

  • Fuller, P. M., and Ebbesson, S. O. E. Central projections of the trigeminal nerve in the bullfrog (Rana catesbeiana). J. Compo Neurol., 1973b, 152, 193–200.

    Google Scholar 

  • Glendenning, K. K., Hall, J. A., Diamond, I. T., and Hall, W. C. The pulvinar nucleus of Galago senegalensis. J. Compo Neurol., 1975, 161, 419–458.

    Google Scholar 

  • Glickstein, M. The vertebrate eye. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotten (eds.), Evolution of Brain and Behavior in Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, N.J., 1976, pp. 53–72.

    Google Scholar 

  • Graeber, R. C., Schroeder, D. M., Jane, J. A., and Ebbesson, S. O. E. The importance of telencephalic structures in visual discrimination learning in nurse sharks. Society for Neuroscience, Second Annual Meeting, 1972.

    Google Scholar 

  • Graybiel, A. M. Visuo-cerebellar and cerebella-visual connections involving the ventral lateral geniculte nucleus. Exp. Brain Res., 1974, 20, 303–306.

    Google Scholar 

  • Graziadei, P. P. C. The olfactory organ of vertebrates: A survey. In R. Bellairs and E. G. Gray (eds.), Essays on the Nervous System; a Festschriftfor Professor J. Z. Young. Clarendon Press, Oxford, 1974, pp. 191–222.

    Google Scholar 

  • Gregory, K. M. Central projections of the eighth nerve in frogs. Brain Behav. Evol., 1972, 5, 70–88.

    Google Scholar 

  • Grether, W. F. Color vision and color blindness in monkeys. Compo Psychol. Monogr., 1939, 15, 1–38.

    Google Scholar 

  • Groenewegem, H. J., Boesten, A. J. P., and Voogd, J. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: An autoradiographic study. J. Compo Neurol., 1975, 162, 505–518.

    Google Scholar 

  • Gross, G. W., and Beidler, L. M. Fast axoplasmic transport in the c-fibers of the garfish olfactory nerve. J. Neurobiol., 1973, 4, 413–428.

    Google Scholar 

  • Gulley, R. L., Cochran, M., and Ebbesson, S. O. E. The visual connections of the adult flatfish, Achirus lineatus. J. Compo Neurol., 1975, 162, 309–320.

    Google Scholar 

  • Gwyn, D. G., and Waldron, H. A. A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res., 1968, 10, 342–351.

    Google Scholar 

  • Gwyn, D. G., and Waldron, H. A. Observations on the morphology of a nucleus in the dorsolateral funiculus of the spinal cord of the guinea-pig, rabbit, ferret and cat. J. Comp. Neurol., 1969, 136, 233–236.

    Google Scholar 

  • Ha, H. Cervicothalamic tract in the rhesus monkey. Exp. Neurol., 1971, 33, 205–212.

    Google Scholar 

  • Hagg, S. and Ha, H. Cervicothalamic tract in the dog. J. Comp. Neurol., 1970, 139, 357–374.

    Google Scholar 

  • Hall, W. C., and Ebner, F. F. Thalamo-telencephalic projections in a turtle (Pseudemys scripta). Anat. Rec., 1969, 193, 163.

    Google Scholar 

  • Harrison, J. M., and Feldman, M. L. Anatomical aspects of the cochlear nucleus and superior olivary complex. In W. D. Neff (ed.), Contributions to Sensory Physiology, Vol. IV. Academic Press, New York, 1970, pp. 95–142.

    Google Scholar 

  • Harrison, J. M., and Warr, W. B. A study of the cochlear nuclei and ascending auditory pathways of the medulla. J. Comp. Neurol., 1962, 119, 341–380.

    Google Scholar 

  • Harting, J. K., Glendenning, K. K., Diamond, I. T., and Hall, W. C., Evolution of the primate visual system: Anterograde degeneration studies of the tecto-pulvinar system. Am. J. Phys. Anthropol., 1973, 38, 383–392.

    Google Scholar 

  • Hayhow, W. R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. Comp. Neurol., 1958, 1, 110.

    Google Scholar 

  • Hayle, T. H. A comparative study of spinocerebellar systems in three classes of poikilothermic vertebrates. J. Comp. Neurol., 1973, 149, 477–495.

    Google Scholar 

  • Heffner, R., and Masterton, B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol., 1975, 12, 161–200.

    Google Scholar 

  • Heimer, L. Synaptic distribution of centripetal and centrifugal nerve fibers in the olfactory system of the rat. J. Anat., 1968, 103, 413–432.

    Google Scholar 

  • Heimer, L. The secondary olfactory connections in mammals, reptiles and sharks. Ann. N.Y. Acad. Sci., 1969, 167, 129–147.

    Google Scholar 

  • Heimer, L. The olfactory connections of the diencephalon in the rat. Brain Behavo. Evol., 1972, 6, 484523.

    Google Scholar 

  • Herrick, C. J. The fasciculus solitarius and its connections in amphibians and fishes. J. Comp. Neurol., 1944, 81, 307–331.

    Google Scholar 

  • Herrick, C. J. The Brain of the Tiger Salamander, Ambystoma tigrinum. The University of Chicago Press, Chicago, 1948.

    Google Scholar 

  • Hodos, W., and Karten, H. J. Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons. J. Comp. Neurol., 1970, 140, 53–68.

    Google Scholar 

  • Hodos, W., Karten, H. J., and Bonbright, J. C., Jr. Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathway in pigeons. J. Comp. Neurol., 1973, 148, 447–468.

    Google Scholar 

  • Hopkins, D. A., and Holstege, G., Central amygdaloid nucleus projections to the lower brainstem in the cat: A horseradish peroxidase and autoradiographic study. Anat. Rec., 1976, 184, 432.

    Google Scholar 

  • Ingle, D. Behavioral correlates of central visual function in anurans. In R. Llinas and W. Precht (eds.), Frog Neurobiology. Springer-Verlag, New York, 1976, pp. 435–451.

    Google Scholar 

  • Joseph, B. S., and Whitlock, D. G. Central projections of selected spinal dorsal roots in anuran amphibians. Anal. Rec., 1968a, 160, 279–288.

    Google Scholar 

  • Joseph, B. S., and Whitlock, D. G. The morphology of spinal afferent-efferent relationships in vertebrates. Brain Behav. Evol., 1968b, 1, 2–18.

    Google Scholar 

  • Kaas, J., Hall, W. C., Killackey, H., and Diamond, I. T. Visual cortex of the tree shrew (Tupaia glis). Architectonic subdivisions and representations of the visual field. Brain Res., 1972, 42, 491–496.

    Google Scholar 

  • Kare, M. Comparative study of taste. Handbook ofSensory Physiology, Vol. IV, No.2. 1971, pp. 270–290.

    Google Scholar 

  • Karten, H. J. The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res., 1967, 6, 409–427.

    Google Scholar 

  • Karten, H. J. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res., 1968, 11, 134–153.

    Google Scholar 

  • Karten, H. J., and Nauta, W. J. H. Organization of retinothalamic projections in the pigeon and owl. Anat. Rec., 1968, 160, 373.

    Google Scholar 

  • Karten, H.J., Hodos, W., Nauta, W.J. H., and Revzin, A. M., Neural connections of the “visual wulst” of the avian telencephalon: Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 1973, 150, 253–278.

    Google Scholar 

  • Krettek, J. E., and Price, J. L. A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res., 1974, 67, 169–174.

    Google Scholar 

  • Kruger, L., and Berkowitz, E. C. The main afferent connections of the reptilian telencephalon as determined by degeneration and electrophysiological methods. J. Comp. N eurol., 1960, 115, 12514l.

    Google Scholar 

  • Larsell, O. The Comparative Anatomy and Histology ofthe Cerebellumfrom Myxinoids through Birds. University Minnesota Press, Minneapolis, 1967.

    Google Scholar 

  • La Vail, J. H., Winston, K. R., and Tish, A. A method based on retrograde axonal transport of protein for identification of cell bodies of origin ofaxons terminating within the C.N.S. Brain Res., 1973, 58, 470–477.

    Google Scholar 

  • Lawrence, D. G., and Kuypers, H. G. J. M., Functional organization of the motor system in the monkey. II. The effect of lesions of the descending brainstem pathways. Brain, 1968, 91, 15–36.

    Google Scholar 

  • Leake, P. A. Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav. Evol., 1974, 10, 170–196.

    Google Scholar 

  • Le Gros Clark, W. E. The Antecedents of Man. Edinburgh University Press, Edinburgh, 1959.

    Google Scholar 

  • Lettvin, J. Y., Maturana, H. R., McCullock, W. S., and Pitts, W. H. What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Engineers, 1959, 47, 1940–195l.

    Google Scholar 

  • Liu, C. N., and Chambers, W. W. Experimental study of anatomical organization of frog’s spinal cord. Anat. Rec., 1957, 127, 326.

    Google Scholar 

  • Manley, G. A. A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution, 1972, 26, 608–621.

    Google Scholar 

  • Marler, P. Specific distinctiveness in the communication signals of birds. Behaviour, 1957, 11, 13–39.

    Google Scholar 

  • Marquis, D. G. Phylogenetic interpretation of the functions of the visual cortex. Arch. Neurol. Psychiat., 1935, 33, 807–815.

    Google Scholar 

  • Masterton, R. B., and Diamond, I. T., Hearing: Central neural mechanisms. Handbook of Perception, Vol. III, 1973, pp. 409–448.

    Google Scholar 

  • Masterton, R. B., Heffner, H., and Ravizza, R. The evolution of human hearing. J. Acoust. Soc. Am., 1969, 45, 966–985.

    Google Scholar 

  • Masterton, R. B., Skeen, L. C., and RoBards, M. J., Origins of anthropoid intelligence. Brain Behav. Evol., 1974, 10, 322–353.

    Google Scholar 

  • Masterton, R. B., Thompson, G. C., Bechtold, J. K., and RoBards, M. J., Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. J. Comp. Physiol. PsychoI., 1975, 89, 379–386.

    Google Scholar 

  • Masterton, R. B., Bitterman, M. E., Campbell, C. B. G. and Hotten, N. (eds.). Evolution of Brain and Behavior in Vertebrates. Wiley, New York, 1976a.

    Google Scholar 

  • Masterton, R. B., Hodos, W., and Jerison, H. (eds.). Evolution, Brain and Behavior, Persistent Problems. Wiley, New York, 1976b.

    Google Scholar 

  • Mehler, W. R. Some observations on secondary ascending afferent systems in the central nervous system. In R. S. Knighton and P. R. Dumke (eds.), Pain. Little, Brown, Boston, 1966, pp. 11–32.

    Google Scholar 

  • Mehler, W. R. Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates. Brain Res., 1972, 37, 55–67.

    Google Scholar 

  • Mehler, W. R., Feferman, M. E., and Nauta, W. J. H., Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey. Brain, 1960, 83, 718–750.

    Google Scholar 

  • Miles, F. A. Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res., 1972, 48, 65–92.

    Google Scholar 

  • Mishkin, M. Visual mechanisms beyond the striate cortex. In R. Russell (ed.), Frontiers in Physiological Psychology, Academic Press, New York, 1966.

    Google Scholar 

  • Morest, D. K. The laminar structure of the medial geniculate body of the cat. J. Anat. (London), 1965, 99, 143–160.

    Google Scholar 

  • Morest, D. K. The non-cortical neuronal architecture of the inferior colliculus of the cat. Anat. Rec., 1966, 154, 477.

    Google Scholar 

  • Nachman, M., and Ashe, J. H. Effects of basolateral amygdala lesions on neophobia, learned taste aversions, and sodium appetite in rats. J. Compo Physiol. Psychol., 1974, 87, 622–643.

    Google Scholar 

  • Nauta, W. J. H., and Gygax, P. A., Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Tech., 1954, 29, 91–93.

    Google Scholar 

  • Nauta, W. J. H., and Karten, H. J. A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex. In F. O. Schmitt (ed.), The Neurosciences: Second Study Program. Rockefeller University Press, New York, 1970, pp. 7–26.

    Google Scholar 

  • Negus, U., Comparative Anatomy of the Nose and Paranasal Sinuses. E & S Livingstone, London, 1958.

    Google Scholar 

  • Nieuwenhuys, R. Topological analysis of the brainstem of the lamprey Lampetra fluviatilis. J. Comp. Neurol., 1972, 145, 165–178.

    Google Scholar 

  • Noback, C. R. The heritage of the human brain. American Museum of Natural History, James Arthur Lecture, 1959.

    Google Scholar 

  • Norgren, R., Taste pathways to hypothalamus and amygdala. J. Compo Neurol., 1976, 166, 17–30.

    Google Scholar 

  • Norgren, R., and Leonard, C. M., Ascending central gustatory pathways. J. Comp. Neurol., 1973, 150, 217–238.

    Google Scholar 

  • Northcutt, R. G. Pallial projections of sciatic, ulnar and trigeminal afferents in a frog (R. catesbeiana). Anat. Rec., 1970, 166, 356.

    Google Scholar 

  • Norton, A. C., and Kruger, L. The dorsal column system of the spinal cord. Its anatomy, physiology, phylogeny and sensory function. An updated review. Brain Inform. Ser., 1973.

    Google Scholar 

  • Papez, J. W., Central acoustic tract in cat and man. Anat. Rec., 1929, 42, 60.

    Google Scholar 

  • Parks, T. N., and Rubel, E. W., Organization and development of brainstem auditory nuclei of the chicken: Organization of projections from n. magnocellularis to n. laminaris. J. Comp. Neurol., 1975, 164, 435–448.

    Google Scholar 

  • Parsons, T. S. Evolution of the nasal structure in the lower tetrapods. Am. Zool., 1967, 7, 397–413.

    Google Scholar 

  • Parsons, T. S. The origin ofJacobson’s organ. Forma Functio, 1970, 3, 105–111.

    Google Scholar 

  • Polyak, S. M. The Vertebrate Visual System. University of Chicago Press, Chicago, 1957.

    Google Scholar 

  • Potter, D. H., Mesencephalic auditory region of the bullfrog. J. Neurol., 1965, 28, 1132–1154.

    Google Scholar 

  • Price, J. L., and Powell, T. P. S. Certain observations on the olfactory pathway. J. Anat., 1971, 110, 105–126.

    Google Scholar 

  • Pumphrey, R. J., Hearing. Symp. Soc. Exp. Biol., 1950, 4, 19–34.

    Google Scholar 

  • Raczkowski, D., Diamond, I. T., and Winer, J. Organization of thalamo-cortical auditory system in the cat studied with horseradish peroxidase. Brain Res., 1976, 101, 345–354.

    Google Scholar 

  • Raisman, G. An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain. Res., 1972, 14, 395–408.

    Google Scholar 

  • Rexed, B., and Brodal, A. The nucleus cervicalis lateralis: A spinocerebellar relay nucleus. J. Neurophysiol., 1951, 14, 399–407.

    Google Scholar 

  • RoBards, M. J., Watkins, D. W. III, and Masterton, R. B., An anatomical study of some somesthetic afferents to the intercollicular terminal zone of the midbrain of the opossum. J. Compo Neurol., 1976, 170, 499–524.

    Google Scholar 

  • Rockel, A. J., and Jones, E. G. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Compo Neurol., 1973a, 147, 11–60.

    Google Scholar 

  • Rockel, A. J., and Jones, E. G. The neuronal organization of the inferior colliculus of the adult cat. II. The pericentral nucleus. J. Compo Neurol., 1973b, 149, 301–334.

    Google Scholar 

  • Rodieck, R. W. The Vertebrate Retina. Freeman, San Francisco, 1973.

    Google Scholar 

  • Rubinson, K. The central distribution of VIII nerve afferents in larval petromyzon marinus. Brain Behav. Evol., 1974, 10, 121–129.

    Google Scholar 

  • Rushton, W. A. H., A theory on the effects of fiber size in medullated nerve. J. Physiol. (London), 1951, 115, 101–122.

    Google Scholar 

  • Samat, H. B., and Netsky, M. G., Evolution of the Neroous System. Oxford University Press, New York, 1974.

    Google Scholar 

  • Scalia, F., and Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Compo Neurol., 1975, 161, 31–56.

    Google Scholar 

  • Scalia F., and Winans, S. S., New perspectives on the morphology of the olfactory system: Olfactory and vomeronasal pathways in mammals. In R. L. Doty (ed.), Mammalian Olfaction, Reproductive Processes, and Behavior. Academic Press, New York, 1976.

    Google Scholar 

  • Schlaer, R., An eagle’s eye: Quality of the retinal image. Science, 1972, 176, 920–922.

    Google Scholar 

  • Schneider, G. E. Two visual systems; brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science, 1969, 163, 895–902.

    Google Scholar 

  • Schroeder, D. M., and Jane, J. A. The intercollicular area of the inferior colliculus. Brain Behav. Evol., 1976, 13, 125–141.

    Google Scholar 

  • Scott, J. W., and Leonard, C. M. The olfactory connections of the lateral hypothalamus in the rat, mouse, and hamster. J. Comp. Neurol., 1971, 141, 331–344.

    Google Scholar 

  • Shepherd, G. M. Synaptic organization of the mammalian olfactory bulb. Physol. Rev., 1972, 52, 864–917.

    Google Scholar 

  • Shorey, H. H. Animal Communication byPheromones. Academic Press, New York, 1976.

    Google Scholar 

  • Skeen, L. C., and Hall, W. C. Efferent projections on the main and the accessory olfactory bulb in the tree shrew (Tupaia glis). J. Comp. Neurol., 1977, 172, 1–36.

    Google Scholar 

  • Sprague, J., and Meikle, T. The role of the superior colliculus in visually guided behavior. Exp. Neurol., 1965, 11, 115–146.

    Google Scholar 

  • Sprague, J., Berlucchi, G., and DiBerardino, A. C. The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat. Brain Behav. Evol., 1970, 3, 285.

    Google Scholar 

  • Stebbins. W. C. (ed.). Animal Psychophysics: The Design and Conduct of Sensory Experiments. Appleton Century-Crofts, New York, 1970.

    Google Scholar 

  • Stephan, F. K., and Nunez, A. A. Elimination of circadian rhythms in drinking, activity, sleep and temperature by isolation of the suprachiasmatic nuclei. Behav. Biol., 1977, 20, 1–16.

    Google Scholar 

  • Stewart, W. A., and King, R. B. Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. J. Comp. Neurol., 1963, 121, 271–286.

    Google Scholar 

  • Strominger, N. L., Nelson, R., and Dougherty, W. J. Second order auditory pathways in the chimpanzee. J. Comp. Neurol., 1977, 172, 349–366.

    Google Scholar 

  • Suzuki, N., and Tucker, D., Amino acids as olfactory stimuli in freshwater catfish, Ictalurus catus (Linn.). Compo Biochem. Physiol., 1971, 40, 399–404.

    Google Scholar 

  • Swanson, L. W., Cowan, W. M., and Jones, E. G. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J. Comp. N eurol., 1974, 156, 143–164.

    Google Scholar 

  • Tansley, K. Vision. Symp. Soc. Exp. Biol., 1950, 4, 19–34.

    Google Scholar 

  • Tansley, K. Vision in Vertebrates. Chapman and Hall, London, 1965.

    Google Scholar 

  • Tigges, J. Untersuchungen iiber den Farbensinn von Tupaia glis. (Diard 1820). Z. Morphol. Anthropol., 1963, 53, 109–123.

    Google Scholar 

  • Todd, J. H., Atema, J., and Bardach, J. E. Chemical communication in social behavior of a fish, the yellow bullhead Ictalurus natalis. Science, 1967, 158, 672–673.

    Google Scholar 

  • Truex, R. C., Taylor, M. J., Smythe, M. O., and Gildenberg, P. L. The lateral cervical nucleus of cat, dog and man. J. Comp. Neurol., 1970, 139, 93–104.

    Google Scholar 

  • Tucker, D., Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system. In L. M. Beidler (ed.), Handbook of Sensory Physiology, Vol. IV, Part 1. Springer-Verlag, New York, 1971, pp. 151–181.

    Google Scholar 

  • Tucker, D., and Smith, J. C. Vertebrate olfaction. In Masterton et al. (eds.), Evolution of Brain and Behavior in Vertebrates, Wiley, New York, 1976, pp. 25–52.

    Google Scholar 

  • Tucker, D., and Suzuki, N. Olfactory responses to schreckstoff of catfish. In D. Schneider, (ed.), Olfaction and Taste IV. Wissenschaftliche Verlagesellschaft MBH, Stuttgart, 1972, pp. 121–127.

    Google Scholar 

  • van Noort, J. The Structure and Connections ofthe Inferior Colliculus: An Investigation of the Lower Auditory System. Van Gorcum, Assen, 1969.

    Google Scholar 

  • Vesselkin, N. P., Agayan, A. L., and Nomokonova, L. M. A study of thalamo-telencephalic afferent systems in frogs. Brain Behav. Evol., 1971, 4, 295–306.

    Google Scholar 

  • Walls, G. L. Origin of the vertebrate eye. Arch. Ophthalmol., 1939, 22,452.

    Google Scholar 

  • Walls, G. The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute, Bloomfield Hills, Mich., 1942, pp. 207–209.

    Google Scholar 

  • Ward, J. P., and Masterton, B. Encephalization and visual cortex in the tree shrew. Brain Behav. Evol., 1970, 3, 421–469.

    Google Scholar 

  • Warkentin, J. The visual acuity of some vertebrates. Psychol. Bull. 1937, 34, 793.

    Google Scholar 

  • Welker, W. I., and Seidenstein, S. Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor). J. Comp. Neurol., 1959, 111, 469–501.

    Google Scholar 

  • Wever, E. G. Origin and evolution of the ear in vertebrates. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Notten (eds.), Evolution ofBrain and Behavior in Vertebrates. Wiley, New York, 1976, pp. 89–106.

    Google Scholar 

  • Wever, E. G., and Werner, Y. L. The functions of the middle ear in lizards: Crotophytus collaris (Iguanidae). J. Exp. Zool., 1970, 175, 327–342.

    Google Scholar 

  • Woolsey, C. N., Organization of cortical auditory system: A review and a synthesis. In G. L. Rasmussen and W. F. Windle (eds.), Neural Mechanisms of the Auditory and Vestibular Systems. Thomas, Springfield, Ill., 1960.

    Google Scholar 

  • Woolsey, C. N., and Fairman, D. Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic area I and II of the cerebral cortex of pig, sheep and other mammals. Surgery, 1946, 19, 684–702.

    Google Scholar 

  • Woolsey, T. A., Welker, C., and Schwartz, R. H. Comparative natomical studies of the sml face cortex with special reference to the occurrence of “barrels” in layer IV. J. Compo Neurol., 1975, 164, 7994.

    Google Scholar 

  • Zeki, S. M. Representation of central visual fields in prestriate cortex of monkey. Brain Res., 1969, 14, 271–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Masterton, R.B., Glendenning, K.K. (1978). Phylogeny of the Vertebrate Sensory Systems. In: Masterton, R.B. (eds) Sensory Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2730-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2730-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2732-5

  • Online ISBN: 978-1-4684-2730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics