Skip to main content

Structure of Viral Nucleic Acids in Situ

  • Chapter
Structure and Assembly

Part of the book series: Comprehensive Virology ((CV,volume 5))

Abstract

The main principles of the structural organization of nucleic acids in solution having been established, scientists are increasingly turning their attention to the fine features of the secondary structure of DNA and RNA and the possibilities of their reversible conformational alterations under the influence of various external factors. These studies have contributed toward an understanding of the fact that the environments of nucleic acids in ribo- and deoxyribonucleoproteins (RNP and DNP) of various origin differ significantly from their environments in the experimental test tube. Thus, studies of conformation of the nucleic acids in situ appear to be the order of the day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, K., Beyreuther, K., Fanning, E., Geissler, N., Gronenborn, B., Klemm, A., Muller-Hill, B., Pfahl, M., and Schmitz, A., 1972, How lac repressor binds to DNA, Nature (Lond.) 237, 322.

    CAS  Google Scholar 

  • Akimenko, N. M., Djakowa, E. B., Evdokimov, Y. M., Frisman, E. V., and Varshaysky, Y. M., 1973, Viscosimetric study on compact form of DNA in water-salt solutions containing polyethylene glycol, FEBS (Fed. Eur. Biochem. Soc.) Leu. 38, 61.

    CAS  Google Scholar 

  • Alberts, B. M., Frey, L., and Delius, H., 1972, Isolation and characterization of gene 5 protein of filamentous bacterial viruses, J. Mol. Biol. 68, 139.

    PubMed  CAS  Google Scholar 

  • Allen, F. S., and van Holde, K. E., 1971, Dichroism of TMV in pulsed electric fields, Biopolymers 10, 865.

    PubMed  CAS  Google Scholar 

  • Anderegg, J. W., Geil, P. H., Beeman, W. W., and Kaesberg, P., 1961, An X-ray scattering investigation of wild cucumber mosaic virus and a related protein, Biophys. J. 1, 657.

    PubMed  CAS  Google Scholar 

  • Anderegg, J. W., Wright, U., and Kaesberg, P., 1963, An X-ray scattering study of bromegrass mosaic virus, Biophys. J. 3, 175.

    PubMed  CAS  Google Scholar 

  • Andriashvili, I. A., Dobrov, E. N., and Tikchonenko, T. I., 1972, Influence of low ionic strength and solute on the Sd phage stability and melting of intraphage DNA, Biokhimia 37, 1251.

    CAS  Google Scholar 

  • Andronikova, M. L., Velikodvorskaya, G. A., Tchruni, F. N., and Tikchonenko, T. I., 1974, The biological effects of chemical modification of the intraphage DNA by Omethylhydroxylamine, Mol. Biol. (Moscow) 8, 3.

    CAS  Google Scholar 

  • Asbeck, F., Beyreuther, K., Köhler, H., von Wettstein, G., and Braunitzer, G., 1969, Virus proteins, IV: The constitution of the coat protein of the fd phage, HoppeSeyler Z. Physiol. Chem. 350, 1047.

    PubMed  CAS  Google Scholar 

  • Bachrach, H. L., 1964, Foot and mouth disease virus: Structure and mechanism of degradation as deduced from absorbance-temperature relationships, J. Mol. Biol. 8, 348.

    PubMed  CAS  Google Scholar 

  • Bachrach, H. L., 1965, Foot and mouth disease virus: Structural changes during reaction with cations and formaldehyde as deduced from absorbance measurements, Virology 25, 532.

    PubMed  CAS  Google Scholar 

  • Bachrach, U., and Friedmann, A., 1967, Purification and some possible functions of internal proteins from coliphage T.2, Biochem. Biophys. Res. Commun. 26, 596.

    PubMed  CAS  Google Scholar 

  • Bancroft, J. B., 1970, The self-assembly of spherical plant viruses, Adv. Virus Res. 16, 99.

    PubMed  CAS  Google Scholar 

  • Bancroft, J. B., Hiebert, E., Rees, M. W., and Markham, R., 1968a, Properties of cowpea chlorotic mottle virus, its protein and nucleic acid, Virology 34, 224.

    PubMed  CAS  Google Scholar 

  • Bancroft, J. B., Wagner, G. W., and Bracker, C. E., 1968b, The self-assembly of a nucleic acid free pseudo-top component for a small spherical virus, Virology 36, 146.

    PubMed  CAS  Google Scholar 

  • Bancroft, J. B., Hiebert, E., and Bracker, C. F., 1969, The effects of various polyanions on shell formation of some spherical viruses, Virology 39, 924.

    PubMed  CAS  Google Scholar 

  • Basu, S., 1971, Binding and interaction of acridine orange with intraphage DNA, Biochim. Biophys. Acta 254, 48.

    PubMed  CAS  Google Scholar 

  • Basu, S., and Das Gupta, N. N., 1967, Spectrophotometric investigation of DNA in the ultraviolet, Biochim. Biophys. Acta 145, 391.

    PubMed  CAS  Google Scholar 

  • Bawden, F. C., and Kleczkowski, A., 1959a, Photoreactivation of nucleic acid from tobacco mosaic virus, Nature (Lond.) 183, 503.

    CAS  Google Scholar 

  • Bawden, F. C., and Kleczkowski, A., 19596, Some properties of decomposition products of potato virus X, Virology 7, 375.

    Google Scholar 

  • Belych, R. A., and Krivissky, A. S., 1966, Mutagenic action of nitrous acid on the 6X174 phage infectious DNA, Proc. Moscow Sci. Assoc. (Russ.) 22, 26.

    Google Scholar 

  • Belych, R. A., Krivissky, A. S., and Tchernik, T. P., 1968, Comparison of mutagenic action of UV light on ¢X174 phage and its infectious DNA, Genetika 4, 62.

    Google Scholar 

  • Bendet, I., 1963, Biophysical characterization of bacteriophage nucleic acid. Adv. Virus Res. 10, 65.

    PubMed  CAS  Google Scholar 

  • Bendet, I., and Mayfield, J. E., 1967, Ultraviolet dichroism of fd bacteriophage, Biophys. J. 7, 111.

    PubMed  CAS  Google Scholar 

  • Bendet, I., Goldstein, D. A., and Lauffer, M. A., 1960, Evidence for internal organization of nucleic acid in T2 bacteriophage, Nature, (Lond.) 187, 781.

    CAS  Google Scholar 

  • Bendich, A., and Rosenkranz, G., 1963, Some thoughts on the double-stranded model of DNA, Progr. Nucleic Acid Res. 1, 219.

    CAS  Google Scholar 

  • Bishop, W. H., Quiocho, F. A., and Richards, F. M., 1966, The removal and exchange of metal ions in cross-linked crystals of carboxypeptidase-A, Biochemistry 5, 4077.

    CAS  Google Scholar 

  • Bode, O., and Paul, H. L., 1955, Elektronmikroskopische Untersuchungen über Kartoffel-Viren. I. Vermessungen an Teilchen des Kartoffel-X-Virus, Biochim. Biophys. Acta 16, 343.

    PubMed  CAS  Google Scholar 

  • Boedtker, H., 1968, Dependence of the sedimentation coefficient on molecular weight of RNA after reaction with formaldehyde, J. Mol. Biol. 35, 61.

    PubMed  CAS  Google Scholar 

  • Boeye, A., 1959, Induction of a mutation in poliovirus by nitrous acid, Virology 9, 691.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, F., and Schachman, H. K., 1960, Studies on the organization of nucleic acids within nucleoproteins, Biochem. Biophys. Res. Commun. 2, 366.

    Google Scholar 

  • Bosch, L., Bonnet-Smits, A., and van Duin, J., 1967, In situ breakage of turnip yellow mosic virus RNA and in situ aggregation of the fragments, Virology 31, 453.

    PubMed  CAS  Google Scholar 

  • Bouley, I. P., and Hirth, L., 1968, Action de la formamide sur le virus de la mosaique jaune du navef: Obtention de capsides arificielles, C. R. Helod. Sennces Acad. Sci. Ser. D Sci. Nat. 266, 430.

    CAS  Google Scholar 

  • Bourgeoi, S., 1972, Gene transcription of reproduction tissue, in “Karolinska Symposia on Research Methods in Reproductive Endocrinology,” 5th Symposium, p. 178.

    Google Scholar 

  • Boy de la Tour, E., and Kellenberger, E., 1965, Aberrant forms of the T-even phage head, Virology 27, 222.

    PubMed  CAS  Google Scholar 

  • Bradley, D. E., 1965, The morphology and physiology of bacteriophages as revealed by the electron microscope, J. R. Microscop. Soc. 84, (3), 257–316.

    CAS  Google Scholar 

  • Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev. 31, 230.

    PubMed  CAS  Google Scholar 

  • Brandes, J., and Bercks, R., 1965, Gross morphology and serology as a basis for classification of elongated plant viruses, Adv. Virus Res. 11, 1.

    PubMed  CAS  Google Scholar 

  • Brown, G. D., and Zubay, G., 1960, Physical properties of the soluble RNA of Escherichia coli., J. Mol. Biol. 2, 287.

    CAS  Google Scholar 

  • Brunner, W. C., and Maestre, M. F., 1974, Circular dichroism of films of polynucleotides, Biopolymers 13, 345.

    PubMed  CAS  Google Scholar 

  • Buckingham, R. H., and Danchin, A., 1973, Fluorescence of tryptophanyl-tRNAr`’ from E. coli: An interaction between the indole and tRNA and its dependence on tRNA conformation, FEBS (Fed. Eur. Biochem. Soc.) Lett. 30, 236.

    CAS  Google Scholar 

  • Budowsky, E. L., Sherban, T. P., Krivissky, A. S., and Sverdlov, E. D., 1972, The effect of mutagenic agents on phage US2 and its infectious RNA. IV. The effect of o-methylhydroxylamine, Genetika 8, 10, 63–73.

    Google Scholar 

  • Bush, C. A., and Scheraga, H. A., 1967, Optical rotatory dispersion and RNA base pairing in ribosomes and in tobacco mosaic virus, Biochemistry 6, 3036.

    PubMed  CAS  Google Scholar 

  • Cancellieri, A., Frontali, C., and Gratton, E., 1974, Dispersion effect on turbidimetric size measurement, Biopolymers 13, 735.

    CAS  Google Scholar 

  • Cantor, C. R., and Tinoco, I., Jr., 1965, Absorption and optical rotatory dispersion of seven trinucleoside diphosphates, J. Mol. Biol. 13, 65.

    PubMed  CAS  Google Scholar 

  • Cantor, C. R., Jaskunas, S. R., and Tinoco, I., Jr., 1966, Optical properties of ribonucleic acid predicted from oligomers, J. Mol. Biol. 20, 39.

    PubMed  CAS  Google Scholar 

  • Carpenter, J. M., and Kleczkowski, A., 1969, The absence of photoreversible pyrimidine dimers in the RNA of ultraviolet-irradiated tobacco mosaic virus, Virology 39, 542.

    PubMed  CAS  Google Scholar 

  • Caspar, D. L. D., 1956, Radial density distribution in the tobacco mosaic virus particle, Nature (Lond.) 177, 928.

    CAS  Google Scholar 

  • Caspar, D. L. D., 1962, Physical Principals in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27, 1.

    PubMed  CAS  Google Scholar 

  • Caspar, D. L. D., 1963, Assembly and stability of the tobacco mosaic virus particle, Adv. Protein Chem. 18, 37.

    PubMed  CAS  Google Scholar 

  • Caspar, D. L. D., and Klug, A., 1963, “Viruses, Nucleic Acid and Cancer,” Williams & Wilkins, Baltimore.

    Google Scholar 

  • Chang, C., Weiskopf, M., and Li, H. J., 1973, Conformational studies of nucleoprotein circular dichroism of deoxyribonucleic acid base pairs bound by polylysine, Biochemistry 12, 3028.

    PubMed  CAS  Google Scholar 

  • Chang, K. Y., and Carr, C. W., 1968, The binding of calcium with deoxyribonucleic acid and deoxyribonucleic acid-protein complexes, Biochim. Biophys. Acta 157, 127.

    CAS  Google Scholar 

  • Cheng, P., 1968, Optical rotatory dispersion, tryptophan location, and base distribution in tobacco mosaic virus, Biochemistry 7, 3367.

    PubMed  CAS  Google Scholar 

  • Chaproniere-Rickenberg, D. M., Mahler, H. R., and Fraser, D., 1964, The interaction of DNA and internal protein from coliphage T2, Virology 3, 96.

    Google Scholar 

  • Cohen, P., and Kidson, C., 1968, Conformational analysis of DNA-poly L-lysine complexes by optical rotatory dispersion, J. Mol. Biol. 35, 241.

    PubMed  CAS  Google Scholar 

  • Cole, A., and Langley, R., 1963, Study of the radiosensitive structure of T2 bacteriophage using low energy electron beams, Biophys. J. 3, 189.

    PubMed  CAS  Google Scholar 

  • Cram, L. S., and Deering, R. A.,. 1970, Ultraviolet inactivation dichroic ratio of oriented fd bacteriophage, Biophys. J. 10, 413.

    PubMed  CAS  Google Scholar 

  • Crawford, L. V., 1966, A minute virus of mice, Virology 29, 605.

    PubMed  CAS  Google Scholar 

  • Cummings, D. J., and Wanko, T., 1963, An electron microscopic study of T2 bacteriophage in thin sections, J. Mol. Biol. 7, 658.

    PubMed  CAS  Google Scholar 

  • Cummings, D. J., Chapman, V. A., and De Long, S. S., 1965, An electron microscopic study of À and Àdg bacteriophage in thin sections, J. Mol. Biol. 14, 418.

    PubMed  CAS  Google Scholar 

  • Damirdagh, I. S., and Shepherd, R. J., 1970, Some of the chemical properties of the tobacco etch virus and its protein and nucleic acid components, Virology 40, 84.

    PubMed  CAS  Google Scholar 

  • Davidson, B., and Fasman, G., 1969, The double-stranded polyadenylic acid-poly-L-lysine complex. A conformational study and characterization, Biochemistry 8, 4116.

    PubMed  CAS  Google Scholar 

  • Day, L. A., 1966, Protein conformation in fd bacteriophage as investigated by optical rotatory dispersion, J. Mol. Biol. 15, 395.

    PubMed  CAS  Google Scholar 

  • Day, L. A., 1969, Conformations of single-stranded DNA and coat protein in fd bac- teriophage as revealed by ultraviolet absorption spectroscopy, J. Mol. Biol. 39, 265.

    PubMed  CAS  Google Scholar 

  • Day, L. A., 1973, Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid-binding protein of filamentous bacteriophage, Biochemistry 12, 5329.

    PubMed  CAS  Google Scholar 

  • Dembo, A., Dobrov, E. N., Lednev, V., Tikchonenko, T. I., and Feigin, L. A., 1965, About packing of DNA in the head of DD VII, T2 and Sd phages, Biofizika 10, 404.

    CAS  Google Scholar 

  • Dityatkin, S. Y., Danileytchenko, V. V., Zavilgelsky, G. V., and Ilyashenko, B. N., 1967, Comparison of UV lightsensitivity of 1v7 and T7 phages and their infectious DNA, Genetika 11, 87.

    Google Scholar 

  • Dobrov, E. N., Andriashvili, I. A., and Tikchonenko, T. I., 1972a, The optical rotary study of Sd phage in low ionic strength solution, Biokhimia 37, 1088.

    CAS  Google Scholar 

  • Dobrov, E. N., Kust, S. V., and Tikchonenko, T. I., 1972b, The structure of single-stranded virus RNA in situ. A study of absorption spectra and optical rotatory dispersion of tobacco mosaic virus and potato virus X preparations, J. Gen. Virol. 6, 161

    Google Scholar 

  • Dobrov, E. N., Mazhul, L. A., Kust, S. V., and Tikchonenko, T. I., 1973, A study of the effect of ethylene glycol on some helical plant viruses, Mol. Biol. (Moscow) 7, 254.

    CAS  Google Scholar 

  • Dobrov, E. N., Lyaser, P. M., and Kust, S. V., 1974, Some optical properties of dolihos mosaic virus, in “Structure and Functions of Nucleic Acids and Nucleoproteins,” Thesis of A. N. Belozersky Symposium Jan. 29-Feb. 11, 1974, Moscow State University, Moscow.

    Google Scholar 

  • Dore, E., Frontali, C., and Gratton, E., 1972, Physico-chemical description of a condensed form of DNA, Biopolymers 11, 443.

    PubMed  CAS  Google Scholar 

  • Dore, E., Frontali, C., and Notargiacomo, S., 1973, Electron microscopic observations of DNA condensates at low pH values, J. Mol. Biol. 78, 391.

    PubMed  CAS  Google Scholar 

  • Dorman, B. P., and Maestre, M. F., 1973, Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2, Proc. Natl. Acad. Sci. USA 70, 255.

    PubMed  CAS  Google Scholar 

  • Doty, P., and Steiner, R. F., 1950, Light scattering and spectrophotometry of colloidal solutions, J. Chem. Phys. 18, 1211–1220.

    CAS  Google Scholar 

  • Doty, P., Boedtker, H., Fresco, J., Haselkorn, R., and Litt, M., 1959, Secondary structure in ribonucleic acids, Proc. Natl. Acad. Sci. USA 45, 482.

    PubMed  CAS  Google Scholar 

  • Dunn, D., and Smith, J. D., 1958, Abstr. 4th Interntl. Congr. Biochem. Vienna, p. 72.

    Google Scholar 

  • Dusenbery, D. A., and Uretz, R. B., 1972, The interaction of acridine dyes with the densely packed DNA of bacteriophage, Biophys. J. 12, 1056.

    PubMed  CAS  Google Scholar 

  • Eiserling, F. A., and Dickson, R. C., 1972, Assembly of viruses, Annu. Rev. Biochem. 41, 467.

    PubMed  CAS  Google Scholar 

  • Eisinger, J., 1966, Information Exchange Group, N 7 (JEG-7).

    Google Scholar 

  • Englander, S. W., and Epstein, H. T., 1957, Optical methods for measuring nucleoprotein and nucleic acid concentration, Arch. Biochem. Biophys. 68, 144.

    PubMed  CAS  Google Scholar 

  • Evdokimov, Y. M., Platonov, A. L., Tikchonenko, A. S., and Varshaysky, Y. M., 1972, A compact form of double-stranded DNA in solution, FEBS (Fed. Eur. Biochem. Soc.) Lett. 23, 180.

    CAS  Google Scholar 

  • Evdokimov, Y. M., Akimenko, N. M., Gluchova, N. E, Tikchonenko, A. S., and Varshaysky, Y. M., 1973, Formation of the compact form of double-stranded DNA in solution in the presence of polyethylene glycol, Mol. Biol. (Moscow) 7, 151.

    CAS  Google Scholar 

  • Evdokimov, Y. M., Akimenko, N. M., Gluchova, N. E., and Varshaysky, Y. M., 1974, DNA compact from in solution I., Mol. Biol. (Moscow) 8, 396.

    CAS  Google Scholar 

  • Falk, M., Hartman, K. A., and Lord, R. C., 1962, Hydration of deoxyribonucleic acid, J. Am. Chem. Soc. 84, 3843.

    CAS  Google Scholar 

  • Fasman, G. D., Schaffhausen, B., Goldsmith, L., and Adler, A., 1970, Conformational changes associated with f-1 histone deoxyribonucleic acid complexes. Biochemistry 9, 2814.

    PubMed  CAS  Google Scholar 

  • Finch, J. G., 1965, Preliminary X-ray diffraction studies on tobacco rattle and barley stripe mosaic viruses, J. Mol. Biol. 12, 612.

    CAS  Google Scholar 

  • Finch, J. T., and Klug, A., 1966, Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus, J. Mol. Biol. 15, 344.

    PubMed  CAS  Google Scholar 

  • Finch, J. T., and Klug, A., 1967, Structure of broad bean mottle virus. I. Analysis of electron micrographs and comparison with turnip yellow mosaic virus and its top component, J. Mol. Biol. 24, 289.

    PubMed  CAS  Google Scholar 

  • Finch, J. T., Klug, A., and van Regenmortel, M. H. V., 1967a, The structure of cucumber mosaic virus, J. Mol. Biol. 24, 303.

    PubMed  CAS  Google Scholar 

  • Finch, J. T., Leberman, R., and Berger, J. E., 1967b, Structure of broad bean mottle virus. II. X-ray diffraction studies, J. Mol. Biol. 27, 17.

    PubMed  CAS  Google Scholar 

  • Fischbach, F. A., Harrison, P. M., and Anderegg, J. W., 1965, An X-ray scattering study of the bacterial virus R17, J. Mol. Biol. 13, 638.

    CAS  Google Scholar 

  • Fraenkel-Conrat, H., 1954, Reactio of nucleic acid with formaldehyde, Biochim. Biophys. Acta 15, 308.

    Google Scholar 

  • Fraenkel-Conrat, H., 1969, “The Chemistry and Biology of Viruses,” Academic Press, New York.

    Google Scholar 

  • Fraenkel-Conrat, H., and Colloms, M., 1967, Reactivity of tobacco mosaic virus and its protein toward acetic anhydride, Biochemistry 6, 2740.

    PubMed  CAS  Google Scholar 

  • Fraenkel-Conrat, H., and Singer, B., 1964, Reconstitution of tobacco mosaic virus. IV. Inhibition of enzymes and other proteins, and use of polynucleotides, Virology 23, 354.

    PubMed  CAS  Google Scholar 

  • Frank, H., and Day, L. A., 1970, Electron microscopic observations on fd bacteriophage, its alkali denaturation products and its DNA, Virology 2, 144.

    Google Scholar 

  • Franklin, R., I955a, Structure of tobacco mosaic virus, Nature (Lond.) 175, 379.

    Google Scholar 

  • Franklin, R., 19556, Structural resemblance between Schramm’s repolymerised A-protein and tobacco mosaic virus, Biochim. Biophys. Acta 18, 313.

    Google Scholar 

  • Franklin, R., 1956a, Location of the ribonucleic acid in the TMV particle, Nature (Lond.) 177, 928.

    CAS  Google Scholar 

  • Franklin, R., 1956b, X-ray diffraction studies of cucumber virus 4 and three strains of tobacco mosaic virus, Biochim. Biophys. Acta 19, 203.

    PubMed  CAS  Google Scholar 

  • Franklin, R. and Klug, A., 1956, The nature of the helical groove on the tobacco mosaic virus particle, Biochim. Biophys. Acta 19, 403.

    PubMed  CAS  Google Scholar 

  • Franklin, R., Klug, A., and Holmes, K. C., 1957, in “Nature of Viruses” (C.E.W. Wolstenholme and E.C.P. Miller, eds.), p. 39, Churchill, London.

    Google Scholar 

  • Franklin, R., Caspar, D. L. D., and Klug, A., 1959, Problems and progress 1908–1958, in “Plant Pathology” (C. S. Holton, ed.), p. 444, University of Wisconsin Press, Madison, Wisc.

    Google Scholar 

  • Fraser, R. D. B., 1952, Infra-red dichroism nucleoprotein tobacco mosaic virus, Nature (Lond.) 170, 490.

    CAS  Google Scholar 

  • Friedman, S., and Ts’o, P. P., 1971, Interaction of poly-L-tyrosine with nucleic acids. I. Formation of complexes, Biochemistry 10, 3099.

    PubMed  CAS  Google Scholar 

  • Frisman, E. V., Vorobjev, V. I., Yanovskaya, N. K., and Shagina, L. V., 1963, The DLP study of molecular structure of ribonucleic acid, Biokhimia 28, 137.

    CAS  Google Scholar 

  • Fuller, W., 1961, Two-stranded helical configurations for ribonucleic acid, J. Mol. Biol. 3, 175.

    PubMed  CAS  Google Scholar 

  • Fuller, W., Wilkins, M. H. F., Wilson, H. R., and Hamilton, L. D., 1965, The molecular configuration of deoxyribonucleic acid. IV. X-ray diffraction study of the A form, J. Mol. Biol. 12, 60.

    PubMed  CAS  Google Scholar 

  • Furuse, K., and Watanabe, I., 1971, Effects of ultraviolet light (UV) irradiation on RNA phage in H2O and in D2O, Virology 46, 171.

    PubMed  CAS  Google Scholar 

  • Gabbay, E. J., Sanford, K., and Baxter, C. S., 1972, Specific interaction of peptides with nucleic acids, Biochemistry 11, 3429.

    PubMed  CAS  Google Scholar 

  • Gabbay, E. J., Sanford, K., Baxter, C. S., and Kapicak, L., 1973, Specific interaction of peptides with nucleic acids. Evidence for a “selective bookmark” recognition hypothesis, Biochemistry 12, 4021.

    PubMed  CAS  Google Scholar 

  • Gabler, R., and Bendet, I., 1972, Comparison of the UV flow dichroism spectra of TMV and several of its mutants, Biopolymers 11, 2393.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, I. M., Polupanov, V. S., and Anisimova, N. I., 1968, Macromolecular’ structure of phage Klebsiella DNA, Mol. Biol. (Moscow) 2, 155.

    CAS  Google Scholar 

  • Gabrilovich, I. M., Romanovskaya, L. N., Zentchenko, S. A., and Resnikova, I. V., 1970, The interaction of the acridine dyes with DNA in solution and inside phage particles, Mol. Biol. (Moscow) 4, 324.

    CAS  Google Scholar 

  • Gellert, M., and Davies, D. R., 1964, Organization of DNA in bacteriophage T4, J. Mol. Biol. 8, 341.

    PubMed  CAS  Google Scholar 

  • Gendon, Y. Z., 1966, Mutagenic and inactivating effect of hydroxylamine in treatment of infectious RNA and native polyomielitis virus, Vopr. Virusol. 6, 724.

    Google Scholar 

  • Ginoza, W., 1958, Kinetics of heat inactivation of ribonucleic acid of TMV, Nature (Lond.) 181, 958.

    CAS  Google Scholar 

  • Goddard, J., Streeter, D., Weber, C., and Gordon, M. P., 1966, Studies on the inactiva- tion of tobacco mosaic virus by ultraviolet light, Photochem. Photobiol. 5, 213–222.

    PubMed  CAS  Google Scholar 

  • Gomatos, P. J., Klug, R. M., and Tamm, I., 1964, Enzymic synthesis of RNA with reovirus RNA as template. I. Characteristics of the reaction catalyzed by the RNA polymerase from Escherichia coli, J. Mol. Biol. 9, 193.

    CAS  Google Scholar 

  • Gordon, D. J., 1972, Mie scattering by optically active particles, Biochemistry 11, 413.

    PubMed  CAS  Google Scholar 

  • Gordon, D. J., and Holzwarth, G., 1971, Artifacts in the measured optical activity of membrane suspensions, Arch. Biochem. Biophys. 142, 481.

    PubMed  CAS  Google Scholar 

  • Gorin, A. S., Spitkovsky, D. M., Tikchonenko, T. I., and Tseytlin, P. I., 1967, The secondary structure of DNA in phage particles, Biochim. Biophys. Acta 134, 490.

    CAS  Google Scholar 

  • Gottesfeld, J. M., Calvin, M., Cole, R. D., Idgaloff, D. M., Moses, V., and Vaughan, W., 1972, An investigation of specific interactions of deoxyribonucleic acid and lysine-rich (F1) histone preparations, Biochemistry 11, 1422.

    PubMed  CAS  Google Scholar 

  • Gratton, E., 1971, Method for the automatic correction of scattering in absorption spectra by using the integrating sphere, Biopolymers 10, 2629.

    PubMed  CAS  Google Scholar 

  • Green, G., and Mahler, H. R., 1970, Comparative study of polyribonucleotides in aqueous and glycol solutions, Biochemistry 9, 368.

    PubMed  CAS  Google Scholar 

  • Greve, J., and Blok, J., 1973, Transient birefringence of T-even bacteriophages. I. T4B in the absence of tryptophan and fiberless T4 particles, Biopolymers 12, 2607–2622.

    PubMed  CAS  Google Scholar 

  • Griffith, J. T., and Kornberg, A., 1972, in “Membrane Research” (C. F. Fox, ed.), p. 281, Academic Press, New York.

    Google Scholar 

  • Grossman, L., Levine, S., and Allison, W. S., 1961, The reaction of formaldehyde with nucleotides and T2 bacteriophage DNA, J. Mol. Biol. 3, 47.

    PubMed  CAS  Google Scholar 

  • Harrison, B. D., Finch, J. T., Gibbs, A. J., Hollings, M., Shepherd, R. J., Valenta, V., and Wetter, C., 1971, Sixteen groups of plant viruses, Virology 45, 356.

    PubMed  CAS  Google Scholar 

  • Hart, R. G., 1955, Electron-microscopic evidence for the localization of ribonucleic acid in the particles of TMV, Proc. Natl. Acad. Sci. USA 1, 261.

    Google Scholar 

  • Haselkorn, R., 1962, Studies on infectious RNA from turnip yellow mosaic virus, J. Mol. Biol. 4, 357.

    PubMed  CAS  Google Scholar 

  • Haselkorn, R., and Doty, P., 1961, The reaction of formaldehyde with polynucleotides, J. Biol. Chem. 236, 2738.

    PubMed  CAS  Google Scholar 

  • Hanes, M., Garrett, R. A., and Gratzer, W. B., 1970, Structure of nucleic acid-poly Haynes, complexes, Biochemistry 9, 4410.

    Google Scholar 

  • Heisenberg, M., 1966, Formation of defective bacteriophage particles by fr amber mutants, J. Mol. Biol. 17, 136.

    PubMed  CAS  Google Scholar 

  • Hélène, C., 1971, Role of aromatic amino-acid residues in the binding of enzymes and proteins to nucleic acids, Nat. New Biol. 234, 120.

    PubMed  Google Scholar 

  • Hélène, C., and Dimicoli, J.-L., 1972, Interaction of oligopeptides containing aromatic amino acids with nucleic acids. Fluorescence and proton magnetic resonance studies, FEBS (Fed. Eur. Biochem. Soc.) Leu. 26, 6.

    Google Scholar 

  • Hélène, C., Dimicoli, J.-L., and Brun, F., 197la, Binding of tryptamine and 5hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies, Biochemistry 10, 3802.

    Google Scholar 

  • Hélène, C., Montenay-Garestier, A., and Dimicoli, J.-L., 1971b, Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance and circular dichroism studies, Biochim. Biophys. Acta 254, 349.

    PubMed  Google Scholar 

  • Henkens, R. W., and Middlebrook, J. L., 1973, Optical and hydrodynamic studies of the structure of bacteriophage f2, Biochemistry 12, 2910.

    PubMed  CAS  Google Scholar 

  • Hiebert, E., Bancroft, J. B., and Bracker, C. E., 1968, The assembly in vitro of some small spherical viruses, hybrid viruses, and other nucleoproteins, Virology 34, 492.

    PubMed  CAS  Google Scholar 

  • Hill, J. H., and Shepherd, R. J., 1972, Molecular weights of plant virus coat proteins by polyacrylamide gel electrophoresis, Virology 47, 817.

    PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, V. H., Marvin, D. A., and Dürwald, H., 1963, Ein fädiger DNS-phage (fd) und ein sphärischer RNS-phage (fr), wirtsspezifisch für mämmliche Stämme von E. coli. 1. Präparation und chemische Eigenschaften von fd und fr, Z. Naturf. Orsch 18B, 876.

    CAS  Google Scholar 

  • Hohn, T., 1969, Role of RNA in the assembly process of bacteriophage fr, J. Mol. Biol. 43, 191.

    PubMed  CAS  Google Scholar 

  • Hohn, T., and Hohn, B., 1970, Structure and assembly of simple RNA bacteriophages, Adv. Virus Res. 16, 43.

    PubMed  CAS  Google Scholar 

  • Holmes, K. C., and Franklin, R. E., 1958, The radial density distribution in some strains of tobacco mosaic virus, Virology 6, 328.

    PubMed  CAS  Google Scholar 

  • Holzwarth, G., Gordon, D. G., McGinness, J. E., Dorman, B. P., and Maestre, M. F., 1974, Mie scattering contributions to the optical density and circular dichroism of T2 bacteriophage, Biochemistry 13, 126.

    PubMed  CAS  Google Scholar 

  • Hosszu, J. L., and Rahn, R. O., 1967, Thymine dimer formation in DNA between 25°C and 100°C, Biochem. Biophys. Res. Commun. 29, 327.

    PubMed  CAS  Google Scholar 

  • Huang, C. W., and Gordon, M. P., 1972, Photoreactivation of tobacco mosaic virus and potato virus X ribonucleic acid inactivated by acetone-sensitized photoreactivation, Photochem. Photobiol. 15, 493.

    PubMed  CAS  Google Scholar 

  • Huang, C. W., and Gordon, M. P., 1974, The formation of photoreversible cyclobutane-type pyrimidine dimers in ultraviolet-irradiated potato virus X, Photochem. Photobiol. 19, 269.

    CAS  Google Scholar 

  • Hurter, J., Gordon, M. P., Kirwan, J. P., and McLaren, A. D., 1974, In vitro photoreactivation of ultraviolet-inactivated ribonucleic acid from tobacco mosaic virus, Photochem. Photobiol. 19, 185.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., and Zubay, G., 1961, Preferential staining of nucleic acid-containing structures for electron microscopy, J. Biophys. Biochem. Cytol. 11, 273–296.

    PubMed  CAS  Google Scholar 

  • Ikehara, K.,Obata, Y., Utyama, H., and Kurata, M., 1973, Bull. Inst. Chem. Res. Kyoto Univ. 51, 140.

    CAS  Google Scholar 

  • Inman, R. B., and Jordan, D. O., 1960, The UV-absorption of calf-thymus DNA, Biochim. Biophys. Acta 42, 530.

    PubMed  CAS  Google Scholar 

  • Inners, D., and Bendet, I. J., 1969, Thermal stability of T2 DNA in situ, Virology 38, 269.

    CAS  Google Scholar 

  • Inoue, S., and Ando, T., 1970, Interaction of clupeine with deoxyribonucleic acid. II. Optical rotatory dispersion studies, Biochemistry 9, 395.

    PubMed  CAS  Google Scholar 

  • Isenberg, H., Cotter, R. I., and Gratzer, N. B., 1971, Secondary structure and interaction of RNA and protein in a bacteriophage, Biochim. Biophys. Acta 232, 184.

    PubMed  CAS  Google Scholar 

  • Jacobsen, J., and Wang, J. C., 1974, On the possibility of intercalation of aromatic amino acid residues into double-stranded DNA helix, Biochim. Biophys. Acta 335, 49.

    CAS  Google Scholar 

  • Jacobsen, M. F., and Baltimore, D., 1968, Morphogenesis of poliovirus. I. Association of the virus RNA with coat protein, J. Mol. Biol. 33, 368.

    Google Scholar 

  • Jonard, G., 1972, Ph.D. Thesis, University of Strasburg, France.

    Google Scholar 

  • Jonard, G., and Hirth, L., 1966, Action de l’urée sur le virus de la mosaique jaune de navet: Formation de capsides artificielles, Ct. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 236, 1909.

    Google Scholar 

  • Jonard, G., Ralijoana, D., and Hirth, L., 1967, Action de l’urée sur la virus de la mosaique jaune du navet. Properties du RNA obtenu lors de la formation de capsides artificielles par M.U, Ct. R. Hebd. Seances Acad. Sci. Ser. D. Sci. Nat. 264, 2694–2698.

    CAS  Google Scholar 

  • Jonard, G., Witz, J., and Hirth, L., 1972, Formation of nucleoprotein complexes from dissociated turnip yellow mosaic virus RNA and capsids at low pH: Preliminary observations, J. Mol. Biol. 67, 165.

    PubMed  CAS  Google Scholar 

  • Jordan, C. F., Lerman, L. S., and Venable, J. H., Jr., 1972, Structure and circular dichroism of DNA in concentrated polymer solutions, Nat. New Biol. 236, 67.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., 1968, The small RNA viruses of plants, animals and bacteria. A. Physical properties, in “Molecular Basis of Virology” (H. Fraenkel-Conrat, ed.), p. 1, Academic Press, New York.

    Google Scholar 

  • Kaper, J. M., 1969, Nucleic acid-protein interactions in turnip yellow mosaic virus, Science (Wash., D.C.) 166, 248.

    CAS  Google Scholar 

  • Kaper, J. M., 1971, Studies on the stabilizing forces of simple RNA viruses. I. Selective interference with protein-RNA interactions in turnip yellow mosaic virus, J. Mol. Biol. 56, 259.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., 1972, RNA viruses: Replication and structure, FEBS (Fed. Eur. Biochem. Soc.) Symp. 27, 19.

    CAS  Google Scholar 

  • Kaper, J. M., 1973, Arrangement and identification of simple isometric viruses according to their dominating stabilizing interactions, Virology 55, 299.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., and Geelen, J. L. M. C., 1971, Studies on the stabilizing forces of simple RNA viruses. II. Stability, d issociation and reassembly of cucumber mosaic virus, J. Mol. Biol. 56, 277.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., and Halperin, J. E., 1965, Alkaline degradation of turnip yellow mosaic virus. II. In situ breakage of the ribonucleic acid, Biochemistry 4, 2434.

    CAS  Google Scholar 

  • Kaper, J. M., and Jenifer, F. G., 1965, Studies on the interaction of p-chloromercuribenzoate with turnip yellow mosaic virus. III. Involvement of the ribonucleic acid, Arch. Biochem. Biophys. 112, 331.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., and Jenifer, F. G., 1967, Studies on the interaction of p-mercuribenzoate with turnip yellow mosaic virus. IV. Conformational change, exposure of buried prototropic groups, and p-H-induced degradation, Biochemistry 6, 440.

    PubMed  CAS  Google Scholar 

  • Kaper, J. M., and Jenifer, F. G., 1968, Studies on the interaction of p-mercuribenzoate with turnip yellow mosaic virus. V. Induced ribonuclease sensitivity and degradation of the virion, Virology 5, 71.

    Google Scholar 

  • Kaper, J. M., Diener, T. O., and Scott, H. A., 1965, Some physical and chemical properties of cucumber mosaic virus (strain Y) and of its isolated ribonucleic acid, Virology 27, 54.

    PubMed  CAS  Google Scholar 

  • Kassanis, B., and Kleczkowski, A., 1965, Inactivation of a strain of tobacco necrosis virus and of the RNA isolated from it by UV radiation of different wave-lengths, Photochem. Photobiol. 4, 209.

    CAS  Google Scholar 

  • Katz, L., and Rich, A., 1966, X-ray diffraction study of large phages, Abstr. Biophys. Soc. USA 10th Annu. Meet. Boston, p. 58.

    Google Scholar 

  • Kausche, G. A., and Hahn, F., 1948, Über die stöchiometrische Farbstoffverbindungen des Tabakmosaikvirusproteins, Z. Naturforsch. 3B, 437–441.

    Google Scholar 

  • Khromov, I. S., Ogarova, N. L., and Tikchonenko, T. I., 1973, in “Molecular Biology of Viruses,” p. 80, Academy of Medical Sciences & Institute of Virology, Moscow.

    Google Scholar 

  • Kilkson, R., 1957, Cylindrically averaged electron density distribution in cucumber virus number four, Arch. Biochem. Biophys. 67, 53.

    PubMed  CAS  Google Scholar 

  • Kilkson, R., and Maestre, M. F., 1962, Structure of T-2 bacteriophage, Nature (Lond.) 195, 494.

    CAS  Google Scholar 

  • Kirby, K. S., 1957, A new method for the isolation of deoxyribonucleic acids: Evidence on the nature of bonds between deoxyribonucleic acid and protein, Biochem. J. 66, 495.

    PubMed  CAS  Google Scholar 

  • Kislina, O. S., and Tikchonenko, T. I., 1972, Interaction of formaldehyde with intra-phage DNA, Biokhimia 37, 372.

    CAS  Google Scholar 

  • Kisseleva, N. P., and Tikchonenko, T. I., 1972, Kinetics of diamination of Sd phage DNA in situ and in solution by nitrous acid, Biokhimia 37, 562.

    Google Scholar 

  • Kleczkowski, A., and Govier, D. A., 1969, Action spectrum for inactivation of the infectivity of potato virus X by U.V. radiation, Photochem. Photobiol. 10, 53.

    PubMed  CAS  Google Scholar 

  • Kleczkowski, A., and McLaren, A. D., 1967, Inactivation of infectivity of RNA of TMV during ultraviolet-irradiation of the whole virus at two wavelengths, J. Gen. Virol. 1, 441.

    PubMed  CAS  Google Scholar 

  • Klimenko, S. M., Tikchonenko, T. I., and Andreev, V. M., 1967, Packing of DNA in the head of bacteriophage T2, J. Mol. Biol. 23, 523.

    PubMed  CAS  Google Scholar 

  • Klug, A., and Caspar, D. L. D., 1960, The structure of small viruses, Adv. Virus Res. 7, 225.

    PubMed  CAS  Google Scholar 

  • Klug, A., and Finch, J. T., 1960, The symmetries of the protein and nucleic acid in turnip yellow mosaic virus: X-ray diffraction studies, J. Mol. Biol. 2, 201.

    CAS  Google Scholar 

  • Klug, A., Holmes, K. C., and Finch, J. T., 1961, X-ray diffraction studies on ribosomes from various sources, J. Mol. Biol. 3, 87.

    PubMed  CAS  Google Scholar 

  • Klug, A., Finch, J. T., Leberman, R., and Longley, W., I966a, Design and structure of regular virus particles, Ciba Found. Symp. Princ. Biomol. Organ, p. 158.

    Google Scholar 

  • Klug, A., Longley, W., and Leberman, R., 1966b, Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. I. X-ray diffraction studies, J. Mol. Biol. 15, 315.

    PubMed  CAS  Google Scholar 

  • Kochetkov, N. K., and Budowsky, E. I., 1969, The chemical modification of nucleic acids. in “Progress in Nucleic Acid Research” (D. Davidson and W. Cohn eds.), Vol. 9, p. 403, Academic Press, New York.

    Google Scholar 

  • Kochetkov, N. K., Budowsky, E. I., Sverdlov, E. D., and Symukova, N. A., 1970, “Organic Chemistry of Nucleic Acids,” Chimia, Moscow.

    Google Scholar 

  • Kotaka, T., and Baldwin, R. L., 1964, Effects of nitrous acid on the dAT copolymer as a template for DNA polymerase, J. Mol. Biol. 9, 323.

    PubMed  CAS  Google Scholar 

  • Krivissky, A. S., Belych, R. A., and Budowsky, E. I., 1973, Mutagenic and inactivating effects of 0-methylhydroxylamine on bacteriophage çpX174 and its infectious DNA, Genetika 9, 8, 105.

    Google Scholar 

  • Kuriatkowski, B., Kotarski, J., and Napiorkowska, J., 1973, Photoluminescence studies on the structure of the DNA in situ of phages V~, Bull. Inst. Med. Mor. Gdansk 24, 143.

    Google Scholar 

  • Kurtz-Fritsch, C., and Hirth, L., 1972, Uncoating of two spherical plant viruses, Virology 47, 385.

    PubMed  CAS  Google Scholar 

  • Kust, S. V., Dobrov, E. N., and Tikchonenko, T. I., 1972, The investigation of the RNA structure in potato X virus particles, Mol. Biol. (Moscow) 6, 42.

    CAS  Google Scholar 

  • Langridge, R., and Gomatos, P. J., 1963, The structure of RNA: Reovirus RNA and transfer RNA have similar three-dimensional structures which differ from DNA, Science (Wash., D.C.) 141, 694.

    CAS  Google Scholar 

  • Langridge, R., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., and Hamilton, L. D., 1957, Molecular structure of deoxyribonucleic acid, J. Biophys. Biochem. Cytol. 3, 767.

    PubMed  CAS  Google Scholar 

  • Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., and Hamilton, L. D., 1960, The molecular configuration of deoxyribonucleic acid. II. Molecular models and their Fourier transforms, J. Mol. Biol. 2, 38.

    CAS  Google Scholar 

  • Leach, S. J., and Scheraga, H. A., 1960, Effect of light scattering on ultraviolet difference spectra, J. Am. Chem. Soc. 82, 4790.

    CAS  Google Scholar 

  • Lerman, L. S., 1970, A transition to a compact form of DNA in polymer solutions, Proc. Natl. Acad. Sci. USA 68, 1886.

    Google Scholar 

  • Lerman, L. S., Jordan, C. F., Venable, J. H., and Maniatis, T. P., 1969, A transition to a compact form of DNA, Abstr. Third Interntl. Biophys. Congr. Cambridge, Mass

    Google Scholar 

  • Li, H. J., Chang, C., and Weiskopf, M., 1973, Thermal denaturation of nucleohistone effects of formaldehyde reaction, Biochemistry 12, 1763.

    PubMed  CAS  Google Scholar 

  • Litman, R. M., 1961, Genetic and chemical alterations in the transforming DNA of pneumococcus caused by ultraviolet light and by nitrous acid, J. Chim. Phys. Phys. Chim. Biol. 58, 997.

    CAS  Google Scholar 

  • McCleary, L. O., and Gordon, M. P., 1973, Ultraviolet irradiation of potato virus X, its RNA, and a hybrid virus particle: Photoreactivation, kinetic isotope effects and quantum yield of inactivation, Photochem. Photobiol. 18, 9.

    PubMed  CAS  Google Scholar 

  • McGavin, S., 1971, Models of specifically paired like (homologous) nucleic acid structures, J. Mol. Biol. 55, 293.

    PubMed  CAS  Google Scholar 

  • McGavin, S., Wilson, H. R., and Barr, G. C., 1966, Intercalated nucleic acid double helices: A stereochemical possibility, J. Mol. Biol. 22, 187.

    CAS  Google Scholar 

  • Maestre, M. F., 1968, Transient electric birefringence studies of T2 bacteriophage and T2 ghost, Biopolymers 6, 415.

    PubMed  CAS  Google Scholar 

  • Maestre, M. F., 1970, Circular dichroism of DNA films: Reversibility studies, J. Mol. Biol. 52, 543.

    PubMed  CAS  Google Scholar 

  • Maestre, M. F., and Kilkson, R., 1962, X-ray investigation of M5 and T2 bacteriophages, Nature (Lond.) 193, 366.

    CAS  Google Scholar 

  • Maestre, M. F., and Tinoco, I., Jr., 1967, Optical rotatory dispersion of viruses, J. Mol. Biol. 23, 323.

    CAS  Google Scholar 

  • Maestre, M. F., Gray, D. M., and Cook, R. B., 1971, Magnetic circular dichroism study on synthetic polynucleotides, bacteriophage structure and DNAs, Biopolymers 10, 2537.

    PubMed  CAS  Google Scholar 

  • Malik, W. U., and Agarwal, S. K., 1967, pH-Metric evidence for the binding of magnesium, manganese and strontium with transfusion gelatin, Ind. J. Chem. 5, l-5.

    Google Scholar 

  • Manykin, A. A., 1972, Experimental estimation of the time of injection for the T2 phage DNA and analysis of physical mechanism of DNA injection, Ph.D. Thesis, Institute of Virology, Moscow.

    Google Scholar 

  • Margaretten, W., Morgan, C., Rosenkranz, H. S., and Rose, H. M., 1966, Effect of hydroxyurea on virus development. I. Electron microscopic study of the effect on the development of bacteriophage T4, J. Bacteriol. 91, 823.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., 1966, X-ray diffraction and electron microscope studies on the structure of the small filamentous bacteriophage fd, J. Mol. Biol. 15, 8.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33, 172.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., and Schaller, H., 1966, The topology of DNA from the small filamentous bacteriophage fd, J. Mol. Biol. 15, 1.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., Spencer, M., Wilkins, M. H. F., and Hamilton, L. D., 1961, The molecular configuration of deoxyribonucleic acid III. X-ray diffraction study of the C form of the lithium salt, J. Mol. Biol. 3, 547.

    PubMed  CAS  Google Scholar 

  • Marvin, D. A., Wiseman, R. L., and Wachtel, E. J., 1974, Filamentous bacterial viruses. XI. Molecular architecture of the class II (pfl, xf) virion, J. Mol. Biol. 82, 121.

    PubMed  CAS  Google Scholar 

  • Matheka, H. D., Bachrach, H. L., and Trautman, R., 1966, Highly purified foot-and-mouth disease virus: Optical and biological measurements during zone electrophoresis in a glucose density gradient, Z. Naturforsch. 21B, 774.

    CAS  Google Scholar 

  • Mattern, M., Binder, R., and Cerutti, P., 1972, Cytidine photohydration in R17 RNA, J. Mol. Biol. 66, 201–204.

    PubMed  CAS  Google Scholar 

  • Matthews, K. S., and Cole, R. D., 1972, Shell formation by capsid protein of f2 bacteriophage, J. Mol. Biol. 65, 1.

    PubMed  CAS  Google Scholar 

  • Matthews, R. E. F., and Ralph, R. K., 1966, Turnip yellow mosaic virus, Adv. Virus Res. 12, 273.

    PubMed  CAS  Google Scholar 

  • Mayfield, J. E., and Bendet, I. J., 1970a, Quantitative flow dichroism. I. Correction for disorientation in a solution of rods, Biopolymers 9, 655.

    PubMed  CAS  Google Scholar 

  • Mayfield, J. E., and Bendet, I. J., 1970b, Quantitative flow dichroism. II. Form dichroism at ultraviolet wavelengths, Biopolymers 9, 669.

    PubMed  CAS  Google Scholar 

  • Mazurenko, N. N., Budowsky, E. I., and Tikchonenko, T. I., 1972, Early stages of reaction between glyoxal and phage nucleoprotein, Vopr. Virusol. 6, 676.

    Google Scholar 

  • Mekshenkov, M. I., and Guseynov, R. D., 1971, Interruption of phage T4 chromosome injection into a cell, Mol. Biol. (Moscow) 5, 444.

    CAS  Google Scholar 

  • Miall, S. H., and Walker, I. O., 1968, Circular dichroism of Escherichia coli ribosomes and TMV, Biochim. Biophys. Acta 166, 711.

    PubMed  CAS  Google Scholar 

  • Michelson, A. M., 1963, “The Chemistry of Nucleosides and Nucleotides,” Academic Press, New York.

    Google Scholar 

  • Michelson, A. M., Monny, C., and Kapuler, A. M., 1970, Poly-8-bromoguanylic acid, Biochim. Biophys. Acta 217, 7.

    PubMed  CAS  Google Scholar 

  • Miki, T., and Knight, C. A., 1968, The protein subunit of potato virus X, Virology 36, 168.

    PubMed  CAS  Google Scholar 

  • Milstein, J. B., and Rossomando, E. T., 1971, Electrooptic studies on the effect of heat treatment on structure in bacteriophage fl, Virology 46, 655.

    Google Scholar 

  • Ninamishima, Y., Takeya, K., Ohnishi, Y., and Amako, K., 1968, Physicochemical and biological properties of fibrous pseudomonas bacteriophages, J. Virol. 2, 208.

    Google Scholar 

  • Minchenkova, L. E., Belych, R. A., Dobrov, E. N., and Ivanov, V. I., 1969, Cu+ and Ag+ ions use for the investigation of the DNA structure inside phage particles, Mol. Biol. (Moscow) 3, 441.

    CAS  Google Scholar 

  • Moll, G., 1963, Elektronenmikroskopische Darstellung des DNA-Fadens im Fortsatz eines Coli-Phagen T2, Naturwissenschaften 50, 411–412.

    Google Scholar 

  • Moody, M. F., 1965, The shape of the T-even bacteriophage head, Virology 26, 567.

    PubMed  CAS  Google Scholar 

  • Moore, D. S., and Wagner, T. E., 1973, Origins of the differences between the circular dichroism of DNA and RNA: Theoretical calculations, Biopolymers 12, 201.

    PubMed  CAS  Google Scholar 

  • Moore, D. S., and Wagner, T. E., 1974, Doublehelical DNA and RNA circular dichroism. Calculations on base-sugar phosphate helix interactions, Biopolymers 13, 977.

    PubMed  CAS  Google Scholar 

  • Nelson, R. G., and Johnson, W. C., 1970, Conformation of DNA in ethylene glycol, Biochem. Biophys. Res. Commun. 41, 211–216.

    PubMed  CAS  Google Scholar 

  • North, A. C. T., and Rich, A., 1961, X-ray diffraction studies of bacterial viruses, Nature (Lond.) 191, 1242.

    CAS  Google Scholar 

  • Offord, R. E., 1966, Electron microscopic observations on the substructure of tobacco rattle virus, J. Mol. Biol. 17, 370.

    PubMed  CAS  Google Scholar 

  • Olins, D. E., and Olins, A. L., 1971, Model nucleohistones: The interaction of FI and F2a1 histones with native T7 DNA, J. Mol. Biol. 57, 437.

    PubMed  CAS  Google Scholar 

  • Olins, D. E., Olins, A. L., and von Hippel, P. H., 1967, Model nucleoprotein complexes: Studies on the interaction of cationic homopolypeptides with DNA, J. Mol. Biol. 24, 157.

    PubMed  CAS  Google Scholar 

  • Perera, O., and Tikchonenko, T. I., 1969, Study of the phage DNA injection into bacterial cell, Vopr. Med. Khim. 15, 5.

    Google Scholar 

  • Perham, R. N., and Richards, F. M., 1968, Reactivity and structural role of protein amino groups in TMV, J. Mol. Biol. 33, 795.

    PubMed  CAS  Google Scholar 

  • Permagorov, V. I., Sladkova, J. A., Velikodvorskaya, G. A., and Tikchonenko, T. I., 1969, Use of dyes for the investigation of structure of DNA in phages, Mol. Biol. (Moscow) 3, 267.

    Google Scholar 

  • Permagorov, V. I., Debabov, V. G., Sladkova, I. A., and Rebentish, B. A., 1970, Structure of DNA and histones in the nucleohistone, Biochim. Biophys. Acta 199, 556.

    Google Scholar 

  • Phillips, J. H., Brown, D. M., and Grossman, L., 1966, The efficiency of induction of mutations by hydroxylamine, J. Mol. Biol. 21, 405.

    CAS  Google Scholar 

  • Philipson, K. D., and Sauer, K., 1973, Light-scattering effects on the circular dichroism of chloroplasts, Biochemistry 12, 3454.

    PubMed  CAS  Google Scholar 

  • Polupanov, V. S., and Cherenkevich, S. N., 1968, Secondary structure of DNA in phage particles, Biofizika 13, 1111.

    PubMed  Google Scholar 

  • Pysarevsky, A. N., Gabrilovich, I. M., and Spytkowsky, D. M., 1968, About secondary structure of DNA in phage particles, Biofizika 13, 1101–1113.

    Google Scholar 

  • Raszka, M., and Mandel, M., 1971,• Interaction of aromatic amino acids with neutral polyadenylic acid, Proc. Natl. Acad. Sci. USA 68, 1190.

    Google Scholar 

  • Rauth, A. M., 1965, Physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light, Biophys. J. 5, 257.

    PubMed  CAS  Google Scholar 

  • Reichmann, M. E., 1959, Potato X virus. III. Light scattering studies, Can. J. Chem. 37, 384.

    CAS  Google Scholar 

  • Reichmann, M. E., 1960, Degradation of potato virus X, J. Biol. Chem. 235, 2959.

    PubMed  CAS  Google Scholar 

  • Remsen, J. F., Miller, N., and Cerutti, P. A., 1970, Photohydration of uridine in the RNA of coliphage R17. II. The relationship between UV inactivation and uridine photohydration, Proc. Natl. Acad. Sci. USA 65, 460.

    PubMed  CAS  Google Scholar 

  • Remsen, J. F., Mattern, M., Miller, N., and Cerutti, P. A., 1971, Photohydration of uridine in the ribonucleic acid of coliphage R17. Lethality of uridine photohydrates and nonlethality of cyclobutane-type photodimers, Biochemistry 10, 524.

    PubMed  CAS  Google Scholar 

  • Richards, K. E., Williams, R. C., and Calendar, R., 1973, Mode of DNA packing within bacteriophage heads, J. Mol. Biol. 78, 255.

    PubMed  CAS  Google Scholar 

  • Rossomando, E. F., and Bladen, H. A., 1969, Physical changes associated with heating bacteriophage fl, Virology 39, 921.

    PubMed  CAS  Google Scholar 

  • Rossomando, E. F., and Milstein, J. B., 1971, Electro-optic evidence for the control of the structure of bacteriophage fl by a minor coat protein, J. Mol. Biol. 58, 187.

    PubMed  CAS  Google Scholar 

  • Rossomando, E. F., and Zinder, N. D., 1968, Studies on the bacteriophage fl. I. Al- kali-induced disassembly of the phage into DNA and protein, J. Mol. Biol. 36, 387.

    PubMed  CAS  Google Scholar 

  • Rubinstein, I., 1960, Ph.D. Thesis, University of California, Los Angeles, Calif. (quoted by Kilkson and Maestre, 1962 ).

    Google Scholar 

  • Rushizky, G. W., Knight, C. A., and McLaren, A. D., 1960, A comparison of the ultraviolet-light inactivation of infectious ribonucleic acid preparations from tobacco mosaic virus with those of the native and reconstituted virus, Virology 12, 32.

    PubMed  CAS  Google Scholar 

  • Rvachev, V. P., Sachnovsky, M. Y., Gumenetsky, S. G., Tikchonenko, T. I., and Dobrov, E. N., 1968, Study of absorbancy of viral suspension with integrating photometer, Zh. Prikl. Spektrosk. 8, 844.

    CAS  Google Scholar 

  • Schachter, E. M., Bendet, I. R., and Lauffer, M. A., 1966, Orientation of the RNA in tobacco mosaic virus, J. Mol. Biol. 22, 165.

    CAS  Google Scholar 

  • Schauenstein, E., and Bayzer, H., 1955, Über die quantitative Berücksichtigung der Tyndall-Absorption im UV-Absorptions-spektrum von Proteinen, J. Polymer Sci. 16, 45–52.

    CAS  Google Scholar 

  • Schellman, J. A., and Schellman, C., 1966, The conformation of polypeptide chains in proteins, in “Proteins” (H. Neurath, ed.) Vol. 2, p. 1, Academic Press, New York.

    Google Scholar 

  • Schramm, G., and Zillig, W., 1955, Über die Struktur des Tabakmosaikvirus. IV. Die Reaggregation des nucleinsäurefreien Proteins, Z. Naturforsch. 10B, 493.

    Google Scholar 

  • Schubert, D., and Frank, H., 1971, Properties of particles aggregated from protein subunits of bacteriophage fr, Virology 43, 41.

    PubMed  CAS  Google Scholar 

  • Schuster, H., and Vielmetter, W., 1961, Studies on the inactivating and mutagenic effect of nitrous acid and hydroxylamine on viruses, J. Chim. Phys. Physochim. Biol. 58, 1005–1010.

    CAS  Google Scholar 

  • Schuster, H., and Wilhelm, R. C., 1963, Reaction differences between TMV and its free ribonucleic acid with nitrous acid, Biochim. Biophys. Acta 68, 554.

    PubMed  CAS  Google Scholar 

  • Sehgal, O. P., 1973, Inactivation of southern bean mosaic virus and its ribonucleic acid by nitrous acid and ultraviolet light, J. Gen. Virol. 18, 1.

    PubMed  CAS  Google Scholar 

  • Sehgal, O. P., and Krause, G. F., 1968, Efficiency of nitrous acid as an inactivating and mutagenic agent of intact tobacco mosaic virus and its isolated nucleic acid, J. Virol. 2, 966.

    PubMed  CAS  Google Scholar 

  • Sehgal, O. P., and Soong, M. M., 1972, Reaction of nitrous acid with viral nucleic acids in situ, Virology 47, 239.

    CAS  Google Scholar 

  • Sellini, H., Maurizot, J. C., Dimicoli, J. L., and Hélène, C., 1973, Hydrogen bonding of amino acid side chains to nucleic acid bases, FEBS (Fed. Eur. Biochem. Soc.) Lett. 30, 219.

    CAS  Google Scholar 

  • Semenov, M. A., Gasan, A. I., and Maleev, V. Y., 1971, Study of thermal destruction of T2 phage and its components with infra-red spectroscopy and adiabatic calorimetry, Dokl. Akad. Nauk SSSR 198, 1449.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. T., Leng, M., and Felsenfeld, G., 1969, Deoxyribonucleic acid-polylysine complexes. Structure and nucleotide specificity, Biochemistry 8, 3219.

    PubMed  CAS  Google Scholar 

  • Shapiro, R., Cohen, B. I., and Clagett, D. C., 1970, Specific acylation of the guanine residues of ribonucleic acid, J. Biol. Chem. 245, 2633.

    PubMed  CAS  Google Scholar 

  • Shapiro, R., and Pohl, S. H., 1968, The reaction of ribonucleosides with nitrous acid. Side products and kinetics, Biochemistry 7, 448.

    PubMed  CAS  Google Scholar 

  • Shatsky, I. N., Chichkova, N. V., and Bogdanov, A. A., 1971, RNA-protein interactions in the ribosomes, Mol. Biol. (Moscow) 5, 817.

    Google Scholar 

  • Shepherd, R. J., Wakeman, R. J., and Ghabrial, S. A., 1968, Preparation and properties of the protein and nucleic acid components of pea enation mosaic virus, Virology 35, 255.

    PubMed  CAS  Google Scholar 

  • Shie, M., Chirgadze, Y. N., and Tikchonenko, T. I., 1970, A study of free and intra-phage DNA hydration using the infra-red spectroscopy, Vopr. Virusol. 5, 619.

    Google Scholar 

  • Shie, M., Kharitonenkov, I. G., Tikchonenko, T. I., and Chirgadze, Y. N., 1972a, New possibilities of investigating nucleic acids and nucleoproteins in aqueous solutions by infrared spectroscopy, Nature (Lond.) 235, 386.

    CAS  Google Scholar 

  • Shie, M., Nevskaya, N. A., and Chirgadze, Y. N., 1972b, The infrared spectra of water solutions of nucleic acids and the nucleoprotein complexes in the region of sugar-phosphate skleleton vibrations. Abst. IV Interntl. Biophys. Congr. Moscow CVII.

    Google Scholar 

  • Shih, T. Y., and Fasman, G. D., 1971, Circular dichroism studies of deoxyribonucleic acid complexes with arginine-rich histone IV (f2al), Biochemistry 10, 1675.

    PubMed  CAS  Google Scholar 

  • Shih, T. Y., and Fasman, G. D., 1972, Circular dichroism studies of histone-deoxyribonucleic acid complexes. A comparison of complexes with histone I (f-1), histone IV (f2a1), and their mixtures, Biochemistry 11, 398.

    PubMed  CAS  Google Scholar 

  • Siegel, A., and Norman, A., 1958, Action spectra for two strains of tobacco mosaic virus, Virology 6, 725.

    PubMed  CAS  Google Scholar 

  • Siegel, A., Wildman, S. G., and Ginoza, W., 1958, Sensitivity to ultra-violet light of infectious TMV nucleic acid, Nature (Lond.) 178, 1117.

    Google Scholar 

  • Simmons, N. S., and Blout, E. R., 1960, The structure of TMV and its components: Ultraviolet optical rotatory dispersion, Biophys. J. 1, 55.

    PubMed  CAS  Google Scholar 

  • Simmons, N. S., and Glazer, A. N., 1966, Reversible disorientation of RNA bases in tobacco mosaic virus (TMV). Optical rotatory dispersion, Abstr. II Interntl. Biophys. Congr. Vienna, p. 208.

    Google Scholar 

  • Simon, L. D., and Anderson, T. F., 1967, The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration, Virology 2, 279.

    Google Scholar 

  • Simukova, N. A., and Budowsky, E. I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: UV-induced formation of polynucleotide-protein crosslinks in bacteriophage Sd virions, FEBS (Fed. Eur. Biochem. Soc.) Lett. 38, 299.

    CAS  Google Scholar 

  • Singer, B., 1971, Chemical modification of viral ribonucleic acid. IX. The effect of ultraviolet irradiation on TMV-RNA and other polynucleotides, Virology 45, 101.

    PubMed  CAS  Google Scholar 

  • Singer, B., and Fraenkel-Conrat, H., 1969a, Chemical modification of viral ribonucleic acid. VII. The action of methylating agents and nitrosoguanidine on polynucleotides including TMV ribonucleic acid, Biochemistry 8, 3260.

    PubMed  CAS  Google Scholar 

  • Singer, B., and Fraenkel-Conrat, H., 19696, Chemical modification of viral ribonucleic acid. VIII. The chemical and biological effects of methylating agents and nitrosoguanidine on tobacco mosaic virus, Biochemistry 8, 3266.

    Google Scholar 

  • Singer, B., and Fraenkel-Conrat, 1969c, Mutagenicity of alkyl and nitroso-alkyl compounds acting on tobacco mosaic virus and its RNA, Virology 39, 395.

    PubMed  CAS  Google Scholar 

  • Singer, B., and Fraenkel-Conrat, H., 1970, Messenger and template activities of chemically modified polynucleotides, Biochemistry 9, 3694.

    PubMed  CAS  Google Scholar 

  • Sinha, R. K., and Misra, D. N., 1971, Studies on the secondary structure of intraphage T-7 DNA, Z. Naturforsch. 26B, 1288.

    CAS  Google Scholar 

  • Sinsheimer, R. L., 1959, Purification and properties of bacteriophage çX174, J. Mol. Biol. 1, 37.

    CAS  Google Scholar 

  • Skladneva, V. B., Budowsky, E. I., and Tikchonenko, T. I., 1973, Study of modification of Sd phage by bisulfite, in “Molecular Biology of Viruses,” p. 86, Academy of Medical Sciences & Institute of Virology, Moscow.

    Google Scholar 

  • Smith, K. C., and Aplin, R. T., 1966, A mixed photoproduct of uracil and cysteine (5- S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light, Biochemistry 5, 2125.

    PubMed  CAS  Google Scholar 

  • Smith, K. C., and Meun, D. H. C., 1968, Kinetics of the photochemical addition of [5S] cysteine to polynucleotides and nucleic acids, Biochemistry 7, 1033.

    PubMed  CAS  Google Scholar 

  • Smith, K. C., and O’Leary, M. E., 1967, Photoinduced DNA-protein cross-links and bacterial killing: A correlation at low temperatures, Science (Wash., D.C.) 155, 1024.

    CAS  Google Scholar 

  • Smith, K. C., Hodgkins, B., and O’Leary, M. E., 1966, The biological importance of ultraviolet light induced DNA-protein crosslinks in Escherichia coli, STAU, Biochim. Biophys. Acta 114, 1.

    CAS  Google Scholar 

  • Solari, A. J., 1965, Structure of the chromatin in sea urchin sperm, Proc. Natl. Acad. Sci. USA 53, 503.

    PubMed  CAS  Google Scholar 

  • Spirin, A. S., 1963, Some problems concerning the macromolecular structure of ribonucleic acids, Progr. Nucleic Acid Res. 1, 30.

    Google Scholar 

  • Spitkowsky, D. M., Andrianov, V. T., and Pisarevsky, A. T., 1969, “Radiation Biophysics of Nucleoproteins,” Atomizdat, Moscow (in Russian).

    Google Scholar 

  • Staehelin, M., 1957, Inactivation of TMV-RNA with formaldehyde, Fed. Proc. 16, 254.

    Google Scholar 

  • Staehelin, M., 1958, Reaction of TMV nucleic acid with formaldehyde, Biochim. Biophys. Acta 29, 410.

    PubMed  CAS  Google Scholar 

  • Starowsky, O. V., 1971, An approach to the calculation of permeability of the TMV capsid, in “Voprosy Obshchey Virusologii,” Vol. 1, p. 44, Institute of Virology, Academy of Medical Sciences, Moscow.

    Google Scholar 

  • Stols, A. L. H., and Veldstra, H., 1965, Interactions of turnip yellow mosaic virus with quaternary ammonium salts, Virology 25, 508.

    PubMed  CAS  Google Scholar 

  • Streeter, D. G., and Gordon, M. P., 1968, A study of inactivation “and reactivation” in the UV irradiated TMV and TMV RNA, Photochem. Photobiol. 8, 81.

    CAS  Google Scholar 

  • Stroke, G. W., and Haliova, M., 1972, Attainment of diffraction limited in high-resolution electron microscopy by a posterioli holographic image sharpening, Optik 35, 50–65.

    Google Scholar 

  • Sundaralingham, M., 1969, Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono-, di-, tri-, tetraphosphates, nucleic acids and polynucleotides, Biopolymers 7, 821.

    Google Scholar 

  • Sutherland, G. B. B. M., and Tsuboi, M., 1957, The infra-red spectrum and molecular configuration of sodium deoxyribonucleate, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 239, 446.

    CAS  Google Scholar 

  • Suwalsky, M., and Traub, W., 1972, A comparative X-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine, Biopolymers 11, 2223.

    PubMed  CAS  Google Scholar 

  • Takeya, K., and Amako, K., 1966, A rod-shaped pseudomonas phage, Virology 28, 163.

    PubMed  CAS  Google Scholar 

  • Taniguchi, M., Yamaguchi, A., and Taniguchi, T., 1971, Flow dichroic spectra of TMV and their protein assemblies, Biochim. Biophys. Acta 251, 164.

    PubMed  CAS  Google Scholar 

  • Tao, M., Gordon, M. P., and Nester, E. W., 1966, Kinetic isotope studies on the inactivation of transforming deoxyribonucleic acid, tobacco mosaic virus, and its nucleic acid by ultraviolet light, Biochemistry 5, 4146.

    CAS  Google Scholar 

  • Tao, M., Small, G., O’Brien, L., and Gordon, M. P., 1968, Photochemical alterations of TMV RNA, Fifth Interntl. Congr. Photobiol. Hanover, New Hampshire, p. 109.

    Google Scholar 

  • Tao, M., Small, G. D., and Gordon, M. P., 1969, Photochemical alterations in ribonucleic acid isolated from ultraviolet-irradiated tobacco mosaic virus, Virology 39, 534.

    PubMed  CAS  Google Scholar 

  • Thomas, C. A., 1963, The organization of DNA in bacteriophage and bacteria, in “Molecular Genetics” (J. H. Taylor, ed.), p. 113, Academic Press, New York. Tikchonenko, T. I., 1969, Conformation of viral nucleic acids in situ, Adv. Virus Res. 15, 201.

    Google Scholar 

  • Tikchonenko, T. I., 1971, About the secondary structure of DNA in virus particles, Vestn. Akad. Med. Nauk SSSR 2, 46.

    Google Scholar 

  • Tikchonenko, T. I., 1974, The DNA-protein interactions in the phage nucleoproteins, in “Structure and Functions of Nucleic Acids and Nucleoproteins,” Thesis of N. A. Belozetsky Symposium, Jan. 29-Feb. 2, 1974, Moscow State University, Moscow.

    Google Scholar 

  • Tikchonenko, T. I., and Dobrov, E. N., 1969, Peculiarities of the secondary structure of bacteriophage in situ. II. Reaction with formaldehyde, J. Mol. Biol. 42, 119.

    PubMed  CAS  Google Scholar 

  • Tikchonenko, T. I., Dobrov, E. N., Velikodvorskaya, G. A., and Kisseleva, N. P., 1966, Peculiarities of the secondary structure of phage DNA in situ, J. Mol. Biol. 18, 58.

    CAS  Google Scholar 

  • Tikchonenko, T. I., Budowsky, E. I., Sklyadneva, V. B., and Khromov, I. S., 1971, The secondary structure of bacteriophage DNA in situ. III. Reaction of Sd phage with Omethylhydroxylamine, J. Mol. Biol. 55, 535.

    PubMed  CAS  Google Scholar 

  • Tikchonenko, T. I., Kisseleva, N. P., Zintshenko, A. I., Ulanov, B. P., and Budowsky, E. I., 1973, Peculiarities of the secondary structure of bacteriophage DNA in situ. IV. Covalent cross-links between DNA and protein that arise in the reaction of Sd phage with O-methylhydroxylamine, J. Mol. Biol. 73, 109.

    PubMed  CAS  Google Scholar 

  • Tikchonenko, T. I., Kislina, O. S., and Dobrov, E. N., 1974a, Peculiarities of the secondary structure of bacteriophage DNA in situ. V. Change in DNA conformation inside the phages under the influence of formaldehyde, Arch. Biochem. Biophys. 160, 1.

    PubMed  CAS  Google Scholar 

  • Tikchonenko, T. I., Budowsky, E. I., and Mazurenko, N. N., 1974b, Peculiarities of the secondary structure of bacteriophage DNA in situ. VI. The reaction of phage Sd with glyoxal (in press).

    Google Scholar 

  • Tikchonenko, T. I., Andronikova, M. L., Tchruni, F. I., and Kisseleva, N. P., I974c, Manuscript in preparation.

    Google Scholar 

  • Tinoco, I., Jr., 1960, Hypochromism in polynucleotides, J. Am. Chem. Soc. 82, 4785–4790.

    CAS  Google Scholar 

  • Tollin, P., Wilson, H. R., Young, D. W., Cathro, J., and Mowat, W. P., 1967, X-ray diffraction and electron microscope studies of narcissus mosaic virus, and comparison with potato virus X, J. Mol. Biol. 26, 353.

    PubMed  CAS  Google Scholar 

  • Tornita, K.-I., and Rich, A., 1964, X-ray diffraction investigations of complementary RNA, Nature (Lond.) 201, 1160.

    Google Scholar 

  • Tramer, Z., Wierzchowski, K. L., and Shugar, D., 1969, Influence of polynucleotide secondary structure on thymine photodimerization, Acta Biochim. Pol. 16, 83.

    PubMed  CAS  Google Scholar 

  • Travers, F., Michelson, A. M., and Douzou, P., 1970, Conformational changes of nucleic acids in methanol-water solutions at low temperature, Biochim. Biophys. Acta 217, 1.

    PubMed  CAS  Google Scholar 

  • Tremaine, J. H., and Goldsack, D. E., 1968, The structure of regular viruses in relation to their subunit amino acid composition, Virology 35, 227.

    PubMed  CAS  Google Scholar 

  • Tsuboi, M., 1969, Application of infrared spectroscopy to structure studies of nucleic acids, Appl. Spectr. Rev. 3, 45.

    CAS  Google Scholar 

  • Tsugita, A., and Fraenkel-Conrat, H., 1963, Contributions from TMV studies to the problem of genetic information transfer and coding., in “Molecular Genetics” (J. H. Taylor, ed.), Part 1, Chapt. X, p. 477, Academic Press, New York.

    Google Scholar 

  • Tung, J-S., and Knight, C. A., 1972, The coat protein subunits of cucumber viruses 3 and 4 and a comparison of methods for determining their molecular weights, Virology 48, 574.

    PubMed  CAS  Google Scholar 

  • Tunis, M. J., and Hearst, J. E., 1968, Optical rotatory dispersion of DNA in concentrated salt solutions, Biopolymers 6, 1218–1223.

    PubMed  CAS  Google Scholar 

  • Tunis-Schneider, M. J., and Maestre, M. F., 1970, Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films-A preliminary study, J. Mol. Biol. 52, 521.

    PubMed  CAS  Google Scholar 

  • Turchinsky, M. F., Kusova, K. S., and Budowsky, E. I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: Bisulfide-induced formation of polynucleotide protein crosslinks in MS2 bacteriophage virions, FEBS (Fed. Eur. Biochem. Soc.) Lett. 38, 304.

    CAS  Google Scholar 

  • Vainstein, B. K., 1963, “X-ray Diffraction by Chain Molecules,” Nauka, Moscow.

    Google Scholar 

  • van Kammen, A., 1972, Plant viruses with a divided genome, Annu. Rev. Plant Pathol. 10, 125.

    Google Scholar 

  • van de Hulst, H. C., 1957, “Light Scattering by Small Particles,” John Wiley & Sons, New York.

    Google Scholar 

  • Varma, A., Gibbs, A. J., Woods, R. D., and Finch, J. T., 1968, Some observations on the structure of the filamentous particles of several plant viruses, J. Gen. Virol. 2, 107.

    PubMed  CAS  Google Scholar 

  • Varshaysky, Y. M., Evdokimov, Y. M., and Akimenko, N. M., 1973, A compact form of double-stranded DNA in solution, Stud. Biophys. 40, 41–56.

    Google Scholar 

  • Velikodvorskaya, G. A., Klimenko, S. M., Mazzarelli, M., and Tikchonenko, T. I., 1968, Interaction of phages with bacterial cell walls, Mol. Biol. (Moscow) 2, 519.

    Google Scholar 

  • Vielmetter, W., and Schuster, H., 1960, The base specificity of mutation induced by nitrous acid in phage T2, Biochem. Biophys. Res. Commun. 2, 324.

    Google Scholar 

  • von Hippel, P. H., and McGhee, J. D., 1972, DNA-protein interactions, Annu. Rev. Biochem. 41, 231.

    Google Scholar 

  • Wagner, K. G., and Arav, R., 1968, On the interaction of nucleotides with poly-Llysine and poly-L-arginine. I. The influence of the nucleotide base on the binding behavior, Biochemistry 7, 1771.

    PubMed  CAS  Google Scholar 

  • Wang, T. M., and McLaren, A. D., 1972, Conformational changes induced in tobacco mosaic virus nucleic acid by ultraviolet radiation, Biophysik 8, 237.

    CAS  Google Scholar 

  • Warshaw, M. M., and Tinoco, I., Jr., 1965, Absorption and optical rotatory dispersion of six dinucleoside phosphates, J. Mol. Biol. 13, 54.

    PubMed  CAS  Google Scholar 

  • Werbin, H., Valentine, R. C., and McLaren, A. D., 1967, Photobiology of RNA bacteriophages. I. Ultraviolet inactivation and photoreactivation studies, Photochem. Photobiol. 6, 205–213.

    CAS  Google Scholar 

  • Werbin, H., Valentine, R. C., Hidalgo-Salvatierra, O., and McLaren, A. D., 1968, Photobiology of the RNA bacteriophages. II. UV-irradiation of f2: Effects on extracellular stages of infection and on early replication, Photochem. Photobiol. 7, 253–261.

    PubMed  CAS  Google Scholar 

  • Wetlaufer, D. B., 1962, Ultraviolet spectra of proteins and amino acids, Adv. Protein Chem. 17, 303.

    CAS  Google Scholar 

  • White, R. A., and Fischbach, F. A., 1973, An X-ray scattering investigation of broad bean mottle virus in solutions of various electron densities, J. Mol. Biol. 75, 549.

    PubMed  CAS  Google Scholar 

  • Wilson, H. R., and Tollin, P., 1969, Some observations on the structure of potato virus X, J. Gen. Yirol. 5, 151.

    Google Scholar 

  • Wiseman, R. L., Dunker, A. K., and Marvin, D. A., 1972, Filamentous bacterial viruses. III. Physical and chemical characterization of the Ifl virion, Virology 48, 230.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., Shigeta, A., and Nozu, K., 1973, Ultraviolet effects on biological function of RNA phage MS2, Biochim. Biophys. Acta 299, 121.

    PubMed  CAS  Google Scholar 

  • Yang, J. T., and Samejima, T., 1969, Optical rotatory dispersion and circular dichroism of nucleic acids, Progr. Nucleic Acid Res. Mol. Biol. 9, 223.

    CAS  Google Scholar 

  • Zaretsky, I. Z., Farashyan, V. P., and Tikchonenko, T. I., 1971, A study of kinetics of T2 phage adsorption on E. coli B cells and stabilization of phage-cell complex against treatment in homogenizer, Vopr. Med. Khim. 17, 315.

    Google Scholar 

  • Zarybnicky, V., 1969, Mechanism of T-even DNA ejection, J. Theor. Biol. 22, 33.

    PubMed  CAS  Google Scholar 

  • Zinder, N. D., 1965, RNA phages, Annu. Rev. Microbiol. 19, 455.

    PubMed  CAS  Google Scholar 

  • Zipper, P., Kratky, O., Herrmann, R., and Hohn, T. 1971, An X-ray small angle study of the bacteriophages fr and R17, Eur. J. Biochem. 18, 1.

    PubMed  CAS  Google Scholar 

  • Zubay, G., and Wilkins, M. H. F., 1960, X-ray diffraction studies of the structure of ribosomes from Escherichia coli, J. Mol. Biol. 2, 105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Tikchonenko, T.I. (1975). Structure of Viral Nucleic Acids in Situ . In: Fraenkel-Conrat, H., Wagner, R.R. (eds) Structure and Assembly. Comprehensive Virology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2709-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2709-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2711-0

  • Online ISBN: 978-1-4684-2709-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics