Skip to main content

High-Resolution Magnetooptical Experiments on Magnetic Structures in Superconductors

  • Chapter
Low Temperature Physics-LT 13

Abstract

Magnetic structures in superconductors have been investigated for a long time.1 Generally, they were made visible by powder techniques which gave moderate resolution until Träuble and Essmann2 succeeded in improving the Bitter technique resolution by more than three orders of magnitude. In searching for a method for high-resolution observation of the kinetics of magnetic structures, the magnetooptical technique first introduced by Alers3 appeared to be most promising (Fig. 1). Employing the Faraday effect in a transparent paramagnetic material, contrast could be obtained only at the expense of the magnetooptical resolution which is of the order of the thickness of the paramagnetic material. Using cerium phosphate glasses, DeSorbo and Healy4 obtained a resolution of approximately 200 µm. The resolution could be improved by using evaporated thin magnetooptical films.5

Invited paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Livingston and W. DeSorbo, in Superconductivity, Marcel Dekker, New York (1969), Vol. 2, p. 1235.

    Google Scholar 

  2. H. Träuble and U. Essmann, Phys. Stat. Sol. 18, 813 (1966).

    Article  ADS  Google Scholar 

  3. P.B. Alers, Phys. Rev. 105, 104 (1957).

    Article  ADS  Google Scholar 

  4. W. DeSorbo and W.A. Healy, Cryogenics 4, 257 (1964).

    Article  Google Scholar 

  5. H. Kirchner, Phys. Lett. 26A, 651 (1968).

    Article  Google Scholar 

  6. S. Methfessel, IEEE Trans. on Mag. Vol. MAG-1(3), 144 (1965).

    Google Scholar 

  7. J.C. Suits, IEEE Trans. on Mag. Vol. MAG-8(1), 95 (1972).

    Google Scholar 

  8. F. Haenssler and L. Rinderer, Helv. Phys. Acta 40, 659 (1967).

    Google Scholar 

  9. H. Kirchner, in Proc. 11th Intern. Conf. Low Temp. Phys., 1968, St. Andrews Univ. Press, St. Andrews, Scotland (1969), Vol. II, p. 815.

    Google Scholar 

  10. H. Kirchner, Rev. Sci. Instr. 44, 379 (1973).

    Article  ADS  Google Scholar 

  11. C. Chen, J.F. Ready, and G. Bernal, J. Appl. Phys. 39, 3916 (1968).

    Article  ADS  Google Scholar 

  12. H. Kirchner, Phys. Lett. 30A, 437 (1969).

    Article  Google Scholar 

  13. H. Kirchner (to be published).

    Google Scholar 

  14. H. Kirchner (to be published).

    Google Scholar 

  15. H. Kirchner, Research Film 8, 21 (1973).

    Google Scholar 

  16. L.D. Landau, Phys. Z. Sowjet. 11, 129 (1937).

    MATH  Google Scholar 

  17. L.D. Landau, Nature 141, 688 (1938).

    Article  ADS  Google Scholar 

  18. A. Hubert, Phys. Stat. Sol. 24, 669 (1967).

    Article  ADS  Google Scholar 

  19. M. Tinkham, Phys. Rev. 129, 2413 (1963).

    Article  ADS  Google Scholar 

  20. G. Lasher, Phys. Rev. 154, 345 (1967).

    Article  ADS  Google Scholar 

  21. E.M. Lifshitz and Yu.V. Sharvin, Doklady Akad. Nauk 79, 783 (1951).

    Google Scholar 

  22. H. Kirchner, Siemens Res. Rep. 1, 39 (1971).

    Google Scholar 

  23. T.E. Faber and A.B. Pippard, Progr. Low Temp. Phys. 1, 159 (1955).

    Article  Google Scholar 

  24. B. König and H. Kirchner, Frühjahrstagung der deutschen Phys. Ges., Freudenstadt, 1972.

    Google Scholar 

  25. R.N. Goren, Technical Report No. 2, Harvard University, 1970.

    Google Scholar 

  26. H. Kirchner and A. Kiendl, Phys. Lett. 39A, 293 (1972).

    Article  Google Scholar 

  27. P.R. Solomon and R.E. Harris, in Proc. 12th Intern. Conf.. Low Temp. Phys., 1970, Academic Press of Japan, Tokyo (1971), p. 475.

    Google Scholar 

  28. R. Olafson, Thesis, St. Andrews, unpublished.

    Google Scholar 

  29. H. Kirchner, Phys. Stat. Sol. (a) 4, 531 (1971).

    Article  ADS  Google Scholar 

  30. A. Kiendl and H. Kirchner, Frühjahrstagung der deutschen Phys. Ges., Freudenstadt, 1972.

    Google Scholar 

  31. N.V. Sarma, Phil. Mag. 18, 171 (1968).

    Article  ADS  Google Scholar 

  32. U. Krägeloh, Phys. Lett. 28A, 657 (1969).

    Article  Google Scholar 

  33. P. Laeng and L. Rinderer, Cryogenics 12, 315 (1972).

    Article  Google Scholar 

  34. A. Kiendl and H. Kirchner, J. Low Temp. Phys. 14, 349 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirchner, H. (1974). High-Resolution Magnetooptical Experiments on Magnetic Structures in Superconductors. In: Timmerhaus, K.D., O’Sullivan, W.J., Hammel, E.F. (eds) Low Temperature Physics-LT 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2688-5_145

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2688-5_145

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2690-8

  • Online ISBN: 978-1-4684-2688-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics