Skip to main content

Disorders of Sphingolipid Metabolism

  • Chapter
Biology of Brain Dysfunction

Abstract

The last 10 years have witnessed dramatic and accelerating progress in investigations of the group of genetic disorders commonly categorized as lipid storage diseases. Except for a few diseases, including Refsum’s disease and Wolman’s disease, most of the lipid storage diseases involve inborn errors of metabolism of a particular type of complex lipids that are characterized by acylsphingosine as the common building block, hence the name sphingolipidoses. Clinical delineation of individual sphingolipidoses dates back to 1881, when Warren Tay, a British ophthalmologist, first described the characteristic retinal finding of what was to become known later as Tay-Sachs disease.

The work from the authors’ laboratories was supported by research grants NS-08420 and NS-09093 from the United States Public Health Service and by research grants 670-A-1 (Inex J. Warriner Memorial Grant for Research on Multiple Sclerosis) and 670-B-2 from the National Multiple Sclerosis Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Tay, Symmetrical changes in the region of the yellow spot in each eye of an infant, Trans. Ophthalmol. Soc. United Kingdom 1:55–57 (1881).

    Google Scholar 

  2. B. Sachs, On arrested cerebral development, with special reference to its cortical pathology, J. Nerv. Ment. Dis 14:541–553 (1887).

    Google Scholar 

  3. C. P. E. Gaucher, De l’epithelioma primitif de la rate, Thèse de Paris (1882).

    Google Scholar 

  4. J. Fabry, Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (purpura papulosa hemorrhagica hebrae), Arch. Dermatol. Syphilol 43:187–200 (1898).

    Google Scholar 

  5. A. Niemann, Ein unbekanntes Krankheitsbild, Jahrb. Kinderheilk 79:1–10 (1914).

    Google Scholar 

  6. L. Pick, Über die lipoidzellige Splenohepatomegalie Typus Niemann-Pick als Stoffwechselerkrankung, Med. Klin 23:1483–1488 (1927).

    Google Scholar 

  7. K. Krabbe, A new familial, infantile form of diffuse brain sclerosis, Brain 39:74–114 (1916).

    Google Scholar 

  8. W. Scholtz, Klinische, pathologisch-anatomische und erbbiologische Untersuchungen bei familiarer diffuser Hirnsklerose im Kindesalter, Z. Ges. Neurol. Psychiat 99:651–717 (1925).

    Google Scholar 

  9. R. M. Norman, H. Urich, A. H. Tingey, and R. A. Goodbody, Tay-Sachs disease with visceral involvement and its relationship to Niemann-Pick’s disease, J. Pathol. Bacteriol 78:409–421 (1959).

    Google Scholar 

  10. B. H. Landing, F. N. Silverman, J. M. Craig, M. D. Jacoby, M. E. Lahey, and D. L. Chadwick, Familial neurovisceral lipidosis, Am. J. Dis. Child 108:503–522 (1964).

    Google Scholar 

  11. A. Aghion, La maladie de Gaucher dans l’enfance, Thèse de Paris (1934).

    Google Scholar 

  12. E. Klenk, Über die Natur der Phosphatide der Milz bei der Niemann-Pickschen Krankheit, Z. Physiol. Chem 229: 151–156 (1934).

    Google Scholar 

  13. Q. B. DeMarsh and J. Kautz, The submicroscopic morphology of Gaucher cells, Blood 12:324–335 (1957).

    Google Scholar 

  14. R. D. Terry and S. R. Korey, Membranous cytoplasmic granules in infantile amaurotic idiocy, Nature 188:1000–1002 (1960).

    Google Scholar 

  15. R. O. Brady, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 275–289, Academic Press, New York (1971).

    Google Scholar 

  16. A. Lajtha (ed.), “Handbook of Neurochemistry,” Vols. 1-7, Plenum Press, New York (1969–1971). (Appropriate chapters.)

    Google Scholar 

  17. G. Schettler (ed.), “Lipids and Lipidoses,” Springer-Verlag, New York (1967).

    Google Scholar 

  18. J. Eichberg, G. Hauser, and M. L; Karnovsky, in “The Structure and Function of Nervous Tissue” (G. H. Bourne, ed.) Vol. 3, pp. 185–287, Academic Press, New York (1969).

    Google Scholar 

  19. R. O. Brady, in “Neurosciences Research” (S. Ehrenpreis and O. C. Solnitzky, eds.) Vol. 2, pp. 301–315, Academic Press, New York (1969).

    Google Scholar 

  20. A. N. Davison, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.) pp. 178–221, F. A. Davis, Philadelphia (1968).

    Google Scholar 

  21. W. Stoffel, Sphingolipids, Ann. Rev. Biochem 40:57–82 (1971).

    Google Scholar 

  22. P. Morell and P. Braun, Sphingolipid metabolism: Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid, J. Lipid Res 13:293–310 (1972).

    Google Scholar 

  23. R. Ledeen and R. Yu, Structure and enzymatic degradation of sphingolipids, in “Lysosomes and Lysosomal Diseases” (H. G. Hers and F. van Hoof, eds.) Academic Press, New York (in press).

    Google Scholar 

  24. R. O. Brady and G. J. Koval, The enzymic synthesis of sphingosine, J. Biol. Chem 233: 26–31 (1958).

    Google Scholar 

  25. M. Sribney, Enzymatic synthesis of ceramide, Biochim. Biophys. Acta 125:542–547 (1966).

    Google Scholar 

  26. S. Gatt, Enzymatic hydrolysis of sphingolipids, I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain, J. Biol. Chem 241:3724–3730 (1966).

    Google Scholar 

  27. M. Sribney and E. P. Kennedy, The enzymatic synthesis of sphingomyelin, J. Biol. Chem 233:1315–1322 (1958).

    Google Scholar 

  28. R. O. Brady, R. M. Bradley, O. M. Young, and H. Kaller, An alternative pathway for the enzymatic synthesis of sphingomyelin, J. Biol. Chem 240:PC 3693–3694 (1965).

    Google Scholar 

  29. W. W. Cleland and E. P. Kennedy, The enzymatic synthesis of psychosine, J. Biol. Chem 235:45–51 (1960).

    Google Scholar 

  30. R. O. Brady, Studies on the total enzymatic synthesis of cerebrosides, J. Biol. Chem 237: PC 2416–2417 (1962).

    Google Scholar 

  31. R. O. Brady, in “Metabolism and Physiological Significance of Lipids” (R. M. C. Dawson and D. N. Rhodes, eds.) pp. 95–109, John Wiley, London (1964).

    Google Scholar 

  32. P. Morell and N. S. Radin, Synthesis of cerebroside by brain from undine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8:506–512 (1969).

    Google Scholar 

  33. P. Morell, E. Costantino-Ceccarini, and N. S. Radin, The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids, Arch. Biochem. Biophys 141: 738–748 (1970).

    Google Scholar 

  34. S. Hammarström, On the biosynthesis of cerebrosides containing nonhydroxy acids. 1. Mass spectrometric evidence for the psychosine pathway, Biochem. Biophys. Res. Commun 45:459–467 (1971).

    Google Scholar 

  35. S. Hammarström, On the biosynthesis of cerebrosides containing nonhydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Commun 45:468–475 (1971).

    Google Scholar 

  36. J. B. Hay and G. M. Gray, Glycosphingolipid biosynthesis in kidneys of normal C3H/He mice and of those with BP8 ascites tumours, Biochem. Biophys. Res. Commun 38:527–532 (1970).

    Google Scholar 

  37. L. Coles and G. M. Gray, The biosynthesis of digalactosylceramide in the kidney of the C57/B1 mouse, Biochem. Biophys. Res. Commun 38:520–526 (1970).

    Google Scholar 

  38. S. Basu, B. Kaufman, and S. Roseman, Enzymatic synthesis of ceramide-glucose and ceramide lactose by glycosyltransferases from embryonic chicken brain, J. Biol. Chem 243:5802–5804 (1968).

    Google Scholar 

  39. G. Hauser, The enzymatic synthesis of ceramide lactoside from ceramide glucoside and UDP-galactose, Biochem. Biophys. Res. Commun 28:502–509 (1967).

    Google Scholar 

  40. J. Hildebrand and G. Hauser, Biosynthesis of lactosylceramide and triglycosylceramide by galactosyltransferases from rat spleen, J. Biol. Chem 244:5170–5179 (1969).

    Google Scholar 

  41. B. Kaufman, S. Basu, and S. Roseman, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 193–213, Pergamon Press, Oxford (1967).

    Google Scholar 

  42. S. Handa and R. M. Burton, Biosynthesis of glycolipids: Incorporation of JV-acetyl galactosamine by a rat brain paniculate preparation, Lipids 4:589–598 (1969).

    Google Scholar 

  43. M. C. M. Yip and J. A. Dain, The enzymic synthesis of ganglioside: I. Brain uridine diphosphate D-galactose: TV-acetyl-galactosaminyl-galactosyl-glucosyl-ceramide galactosyl transferase, Lipids 4:270–277 (1969).

    Google Scholar 

  44. S. Gatt, in “Chemistry and Metabolism of Sphingolipids” (C. C. Sweeley, ed.) pp. 235–249, North Holland, Amsterdam (1970).

    Google Scholar 

  45. E. Yavin and S. Gatt, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase, Biochemistry 8:1692–1698 (1969).

    Google Scholar 

  46. M. Heller and B. Shapiro, Enzymic hydrolysis of sphingomyelin by rat liver, Biochem. J 98:763–769 (1966).

    Google Scholar 

  47. J. N. Kanfer, O. M. Young, D. Shapiro, and R. O. Brady, The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue, J. Biol. Chem 241:1081–1084 (1966).

    Google Scholar 

  48. Y. Barnholz, A. Roitman, and S. Gatt, Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain, J. Biol. Chem 241:3731–3737 (1966).

    Google Scholar 

  49. P. B. Schneider and E. P. Kennedy, Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease, J. Lipid Res 8:202–209 (1967).

    Google Scholar 

  50. N. J. Weinreb, R. O. Brady, and A. L. Tappel, The lysosomal localization of sphingolipid hydrolases, Biochim. Biophys. Acta 159:141–146 (1968).

    Google Scholar 

  51. E. Mehl and H. Jatzkewitz, Eine Cerebrosidsulfatase aus Schweineniere, Hoppe-Seylers Z. Physiol. Chem 339:260–276 (1964).

    Google Scholar 

  52. E. Mehl and H. Jatzkewitz, Cerebroside 3-sulfate as a physiological substrate of arylsulfatase A, Biochim. Biophys. Acta 151:619–627 (1968).

    Google Scholar 

  53. A. A. Farooqui and B. K. Bachhawat, The regional distribution, age dependent variation and species differences of brain arylsulfatases, J. Neurochem 18:635–646 (1971).

    Google Scholar 

  54. A. K. Hajra, D. M. Bowen, Y. Kishimoto, and N. S. Radin, Cerebroside galactosidase of brain, J. Lipid Res 7:379–386 (1966).

    Google Scholar 

  55. D. M. Bowen and N. S. Radin, Purification of cerebroside galactosidase from rat brain, Biochim. Biophys. Acta 152:587–598 (1968).

    Google Scholar 

  56. D. M. Bowen and N. S. Radin, Properties of cerebroside galactosidase, Biochim. Biophys. Acta 152:599–610 (1968).

    Google Scholar 

  57. D. M. Bowen and N. S. Radin, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in developing rat brain, J. Neurochem 16:501–511 (1969).

    Google Scholar 

  58. L. Svennerholm, Chromatographic separation of human brain gangliosides, J. Neurochem 10:613–623 (1963).

    Google Scholar 

  59. H. Wiegandt, Ganglioside, Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol 57:190–222 (1966).

    Google Scholar 

  60. R. Öhman, A. Rosenberg, and L. Svennerholm, Human brain sialidase, Biochemistry 9: 3774–3782 (1970).

    Google Scholar 

  61. C. L. Schengrund and A. Rosenberg, Intracellular location and properties of bovine brain sialidase, J. Biol. Chem 245:6196–6200 (1970).

    Google Scholar 

  62. R. Öhman, Subcellular fractionation of ganglioside sialidase from human brain, J. Neurochem 18:89–95 (1971).

    Google Scholar 

  63. S. Mahadevan, J. C. Nduaguba, and A. L. Tappel, Sialidase of rat liver and kidney, J. Biol. Chem 242:4409–4413 (1967).

    Google Scholar 

  64. S. Gatt and M. M. Rapport, Isolation of β-galactosidase and β-glucosidase from brain, Biochim. Biophys. Acta 113:567–576 (1966).

    Google Scholar 

  65. S. Gatt, Enzymatic hydrolysis of sphingolipids. V. Hydrolysis of monosialoganglioside and hexosylceramides by rat brain β-galactosidase, Biochim. Biophys. Acta 137:192–195 (1967).

    Google Scholar 

  66. Y. Z. Frohwein and S. Gatt, Enzymatic hydrolysis of sphingolipids. VI. Hydrolysis of ceramide glycosides by calf brain β-N-acetylhexosaminidase, Biochemistry 6:2783–2787 (1967).

    Google Scholar 

  67. K. Sandhoff and W. Wässle, Anreicherung und Charakterisierung zweir Formen der menschlichen N-Acetyl-β-D-hexosaminidase, Z. Physiol. Chem 352:1119–1133 (1971).

    Google Scholar 

  68. K. Sandhoff and H. Jatzkewitz, A particle-bound sialyl lactosidoceramide splitting mammalian sialidase, Biochim. Biophys. Acta 141:442–444 (1967).

    Google Scholar 

  69. Z. Leibowitz and S. Gatt, Enzymatic hydrolysis of sphingolipids. VII. Hydrolysis of gangliosides by a neuraminidase from calf brain, Biochim. Biophys. Acta 152:136–143 (1968).

    Google Scholar 

  70. E. H. Kolodny, J. Kanfer, J. M. Quirk, and R. O. Brady, Properties of a particle-bound enzyme from rat intestine that cleaves sialic acid from Tay-Sachs ganglioside, J. Biol. Chem 246:1426–1431 (1971).

    Google Scholar 

  71. K. Sandhoff, H. Pilz, and H. Jatzkewitz, Über den enzymatischen Abbau von N-acetylneuraminsäurefreien Gangliosidresten (Ceramidoligosacchariden), Z. Physiol. Chem 338: 281–293 (1964).

    Google Scholar 

  72. R. O. Brady, R. M. Bradley, and E. Martensson, The metabolism of ceramide trihexosides. I. Purification and properties of an enzyme that cleaves the terminal galactose molecule of galactosylgalactosylglucosylceramide, J. Biol. Chem 242:1021–1026 (1967).

    Google Scholar 

  73. S. Gatt and M. M. Rapport, Enzymic hydrolysis of sphingolipids. Hydrolysis of ceramide lactoside by an enzyme from rat brain, Biochem. J 101:680–686 (1966).

    Google Scholar 

  74. N. S. Radin, L. Hof, R. M. Bradley, and R. O. Brady, Lactosylceramide galactosidase: Comparison with other sphingolipid hydrolases in developing rat brain, Brain Res 14: 497–505 (1969).

    Google Scholar 

  75. R. O. Brady, J. Kanfer, and D. Shapiro, The metabolism of glucocerebroside. I. Purification and properties of glucocerebroside-cleaving enzyme from spleen tissue, J. Biol. Chem 240:39–43 (1965).

    Google Scholar 

  76. S. Gatt, Enzymatic hydrolysis of sphingolipids. Hydrolysis of ceramide glucoside by an enzyme from ox brain, Biochem. J 101:687–691 (1966).

    Google Scholar 

  77. E. G. Lapetina, E. F. Soto, and E. deRobertis, Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex, Biochim. Biophys. Acta 135:33–43 (1967).

    Google Scholar 

  78. H. Wiegandt, The subcellular localization of gangliosides in the brain, J. Neurochem 14: 671–674 (1967).

    Google Scholar 

  79. L. Svennerholm, The distribution of lipids in the human nervous system — 1. Analytical procedure, lipids of foetal and newborn brain, J. Neurochem 11:839–853 (1964).

    Google Scholar 

  80. T. Yamakawa and S. Suzuki, The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. III. Globoside, the sugar containing lipid of human blood stroma, J. Biochem 39:393–399 (1952).

    Google Scholar 

  81. A. C. Crocker, The cerebral defect in Tay-Sachs disease and Niemann-Pick disease, J. Neurochem 7:69–80 (1961).

    Google Scholar 

  82. A. C. Crocker and S. Farber, Niemann-Pick disease: A review of eighteen patients, Medicine 37:1–95 (1958).

    Google Scholar 

  83. R. Lynn and R. D. Terry, Lipid histochemistry and electron microscopy in adult Niemann-Pick disease, Am. J. Med 37:987–994 (1964).

    Google Scholar 

  84. Y. Tanaka, G. Brecher, and D. S. Frederickson, Cellules de la maladie de Niemann-Pick et de quelques autres lipoidoses, Nouv. Rev. Franc. Hematol 3:5–12 (1963).

    Google Scholar 

  85. B. J. Wallace, L. Schneck, H. Kaplan, and B. W. Volk, Fine structure of cerebellum of children with lipidoses, Arch. Pathol 80:466–486 (1965).

    Google Scholar 

  86. S. Luse, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 93–105, Pergamon Press, Oxford (1966).

    Google Scholar 

  87. E. Klenk, Über die Natur der Phosphatide und anderer Lipoide des Gehirns und der Leber bei der Niemann-Pickschen Krankheit, Z. Physiol. Chem 235:24–36 (1937).

    Google Scholar 

  88. C. Tropp and B. Eckardt, Gehirn-Sphingomyelin bei Niemann-Pickscher Krankheit, Z. Physiol. Chem 245:163–174 (1936).

    Google Scholar 

  89. P. H. Teunissen and A. den Ouden, Nachtrag der Mitteilung: Beitrag zur Kenntnis der Chemie der Lipoidosis phosphatidica, Z. Physiol. Chem 252:271–279 (1938).

    Google Scholar 

  90. E. Chargaff, A study of the spleen in a case of Niemann-Pick disease, J. Biol. Chem 130: 503–511 (1939).

    Google Scholar 

  91. J. N. Cumings, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 171–178, Academic Press, New York (1962).

    Google Scholar 

  92. L. van Bogaert, F. Seitelberger, and G. W. F. Edgar, Études neuropathologiques et neurochimiques sur un cas de Niemann-Pick chez un jeune enfant, Acta Neuropathol 3:57–73 (1963).

    Google Scholar 

  93. S. Kamoshita, A. M. Aron, K. Suzuki, and K. Suzuki, Infantile Niemann-Pick disease: A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin, Am. J. Dis. Child 117:379–394 (1969).

    Google Scholar 

  94. M. Philippart L. Martin, J. J. Martin, and J. H. Menkes, Niemann-Pick disease: Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker’s group C), Arch. Neurol 20:227–238 (1969).

    Google Scholar 

  95. H. Sobotka, E. Epstein, and L. Lichtenstein, The distribution of lipoid in a case of Niemann-Pick disease associated with amaurotic idiocy, Arch. Pathol 10:677–686 (1930).

    Google Scholar 

  96. H. Sobotka, D. Glick, M. Reiner, and L. R. Tuchman, The lipoids of spleen and liver in various types of lipoidoses, Biochem. J 27:2031–2034 (1933).

    Google Scholar 

  97. L. L. Uzman, The significance of the increase of nonspecific lipid components in primary lipoid-storage diseases, Arch. Pathol 65:331–339 (1958).

    Google Scholar 

  98. B. I. Ivemark, L. Svennerholm, C. Thorén, and R. Tunell, Niemann-Pick disease in infancy. Report of two siblings with clinical, histologic and chemical studies, Acta Paediat 52:391–404 (1963).

    Google Scholar 

  99. D. S. Frederickson, in “The Metabolic Basis of Inherited Disease,” 2nd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 586–617, McGraw-Hill, New York (1966).

    Google Scholar 

  100. R. M. Norman, R. M. Forrester, and A. H. Tingey, The juvenile form of Niemann-Pick disease, Arch. Dis. Childh 42:91–96. (1967).

    Google Scholar 

  101. G. Rouser, G. Kritchevsky, A. Yamamoto, A. G. Knudson, Jr., and G. Simon, Accumulation of a glycerophospholipid in classical Niemann-Pick disease, Lipids 3:287–290 (1968).

    Google Scholar 

  102. P. N. Seng, H. Debuch, B. Witter, and H.-R. Wiedemann, Bis (monoacylglycerin) phosphosäure-Vermehrung bei Sphingomyelinose (M. Niemann-Pick?), Z. Physiol. Chem 352:280–288 (1971).

    Google Scholar 

  103. C. W. Seiter and R. H. McCluer, Analysis of the structure of two gangliosides which accumulate in the brain in Niemann-Pick disease, J. Neurochem 17:1525–1526 (1970).

    Google Scholar 

  104. A. C. Crocker and V. B. Mays, Sphingomyelin synthesis in Niemann-Pick disease, Am. J. Clin. Nutr 9:63–67 (1961).

    Google Scholar 

  105. R. O. Brady, J. N. Kanfer, M. B. Nock, and D. S. Frederickson, The metabolism of sphingomyelin, II. Evidence of an enzymatic deficiency in Niemann-Pick disease, Proc. Natl. Acad. Sci 55:366–369 (1966).

    Google Scholar 

  106. P. B. Schneider and E. P. Kennedy, Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease, J. Lipid Res 8:202–209 (1967).

    Google Scholar 

  107. J. P. Kampine, R. O. Brady, J. N. Kanfer, M. Feld, and D. Shapiro, Diagnosis of Gaucher’s disease and Niemann-Pick disease with small samples of venous blood, Science 155: 86–88 (1967).

    Google Scholar 

  108. H. R. Sloan, B. W. Uhlendorf, J. N. Kanfer, R. O. Brady, and D. S. Frederickson, Deficiency of sphingomyelin-cleaving enzyme activity in tissue cultures derived from patients with Niemann-Pick disease, Biochem. Biophys. Res. Commun 34:582–588 (1969).

    Google Scholar 

  109. R. A. Snyder and R. O. Brady, The use of white cells as a source of diagnostic material for lipid storage diseases, Clin. Chim. Acta 25:331–338 (1969).

    Google Scholar 

  110. C. J. Epstein, R. O. Brady, E. L. Schneider, R. M. Bradley, and D. Shapiro, In utero diagnosis of Niemann-Pick disease, Am. J. Hum. Genet 23: 533–535 (1971).

    Google Scholar 

  111. J. W. Callahan and M. Philippart, Phosphodiesterases (including sphingomyelinase) in Niemann-Pick disease types A and C, Neurology 21:442 (1971).

    Google Scholar 

  112. D. S. Frederickson and H. R. Sloan, in “The Metabolic Basis of Inherited Disease,” 3rd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 730–759. McGraw-Hill, New York (1972).

    Google Scholar 

  113. R. G. Hibbs, V. J. Ferrans, P. R. Cipriano, and K. J. Tardiff, A histochemical and electron microscopic study of Gaucher cells, Arch. Pathol 89:137–153 (1970).

    Google Scholar 

  114. R. E. Lee, The fine structure of the cerebroside occurring in Gaucher’s disease, Proc. Natl. Acad. Sci 61:484–489 (1968).

    Google Scholar 

  115. E. R. Fisher and R. Reidbord, Gaucher’s disease: Pathogenetic considerations based on electron microscopic and histochemical observations, Am. J. Pathol 41:679–693 (1962).

    Google Scholar 

  116. B. W. Volk and B. J. Wallace, The liver in lipidoses; an electron microscopic and histochemical study, Am. J. Pathol 49:203–225 (1966).

    Google Scholar 

  117. S. W. Jordan, Electron microscopy of Gaucher cells, Exptl. Molec. Pathol 3:76–85 (1964).

    Google Scholar 

  118. B. Q. Banker, J. Q. Miller, and A. C. Crocker, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 73–99. Academic Press, New York (1962).

    Google Scholar 

  119. R. M. Norman, H. Urich, and O. C. Lloyd, The neuropathology of infantile Gaucher’s disease, J. Pathol. Bacteriol 72:121–131 (1956).

    Google Scholar 

  120. M. Adachi, B. J. Wallace, L. Schneck, and B. W. Volk, Fine structure of central nervous system in early infantile Gaucher’s disease, Arch. Pathol 83:513–526 (1967).

    Google Scholar 

  121. K. Wakutani, H. Nakamura, H. Mori, H. Morihisa, and G. Ando, A case of infantile Gaucher’s disease — Neuropathologic and electron microscopic observation, Clin. Neurol 9:261–270 (1969).

    Google Scholar 

  122. L. Svennerholm, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 169–186, Pergamon Press, Oxford (1967).

    Google Scholar 

  123. A. F. J. Maloney and J. N. Cumings, A case of juvenile Gaucher’s disease with intraneuronal lipid storage, J. Neurol. Neurosurg. Psychiat 23:207–213 (1960).

    Google Scholar 

  124. J. Montreuil, P. Bowanger, and E. Houcke, Chromatographie sur papier des constituants glucidiques des cérébrosides d’une rate de Gaucher, Bull. Soc. Chim. Biol 35:1125–1127 (1953).

    Google Scholar 

  125. L. Svennerholm, in “Brain Lipids and Lipoproteins, and the Leukodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 104–119, Elsevier, Amsterdam (1963).

    Google Scholar 

  126. M Philippart and J. H. Menkes, Isolation and characterization of the principal cerebral glycolipids in the infantile and adult forms of Gaucher’s disease, J. Neuropathol. Exptl. Neurol 24:389–400 (1967).

    Google Scholar 

  127. J. H. French, M. Brotz, and C. M. Poser, Lipid composition of the brain in infantile Gaucher’s disease, Neurology 19:81–86 (1969).

    Google Scholar 

  128. M. Philippart, B. Rosenstein, and J. H. Menkes, Isolation and characterization of the main splenic glycolipids in the normal organ and in Gaucher’s disease: Evidence for the site of metabolic block, J. NeuropathoL Exptl. Neurol 24:290–303 (1965).

    Google Scholar 

  129. A Makita, C. Suzuki, and Z. Yosizawa, Glycol pids isolated from the spleen of Gaucher’s disease, Tohoku J. Exptl. Med 88:277–288 (1966).

    Google Scholar 

  130. E. G. Trams and R. O. Brady, Cerebroside synthesis in Gaucher’s disease, J. Clin. Invest 39:1546–1550 (1960).

    Google Scholar 

  131. R. O. Brady, J. N. Kanfer, and D. Shapiro, Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease, Biochem. Biophys. Res. Commun 18: 221–225 (1965).

    Google Scholar 

  132. R. O. Brady, J. N. Kanfer, R. M. Bradley, and D. Shapiro, Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease, J. Clin. Invest 45:1112–1115 (1966).

    Google Scholar 

  133. A. D. Patrick, A deficiency of glucocerebrosidase in Gaucher’s disease, Biochem. J 97: 17C–18C (1965).

    Google Scholar 

  134. E. Beutler and W. Kühl, The diagnosis of the adult type of Gaucher’s disease and its carrier state by demonstration of deficiency of β-glucosidase activity in peripheral blood leukocytes, J. Lab. Clin. Med 76:747–755 (1970).

    Google Scholar 

  135. R. O. Brady, Cerebral lipidoses, Ann. Rev. Med 21:317–334 (1970).

    Google Scholar 

  136. E. Beutler, W. Kühl, F. Trinidad, R. Teplitz, and H. Nadler, β-Glucosidase activity in fibroblasts from homozygotes and heterozygotes for Gaucher’s disease, Am. J. Hum. Genet 23:62–66 (1971).

    Google Scholar 

  137. C. J. Epstein and R. O. Brady, personal communication.

    Google Scholar 

  138. P. A. Öckerman and P. Köhlin, Tissue acid hydrolase activities in Gaucher’s disease, Scand. J. Clin. Lab. Invest 22:62–64 (1968).

    Google Scholar 

  139. B. Hagberg, H. Kolberg, P. Sourander, and H. O. Akesson, Infantile globoid cell leukodystrophy (Krabbe’s disease). A clinical and genetic study of 32 Swedish cases 1953–1967, Neuropädiatrie 1:74–88 (1969).

    Google Scholar 

  140. H. G. Dunn, B. D. Lake, C. L. Dolman, and J. Wilson, The neuropathy of Krabbe’s infantile cerebral sclerosis (globoid cell leucodystrophy), Brain 92:329–344 (1969).

    Google Scholar 

  141. B. J. Wallace, S. W. Aronson, and B. W. Volk, Histochemical and biochemical studies of globoid cell leukodystrophy (Krabbe’s disease), J. Neurochem 11:367–376 (1963).

    Google Scholar 

  142. N. Allen and E. de Veyra, Microchemical and histochemical observations in a case of Krabbe’s leukodystrophy, J. NeuropathoL Exptl. Neurol 26:456–474 (1967).

    Google Scholar 

  143. K. Suzuki and Y. Suzuki, in “The Metabolic Basis of Inherited Disease,” 3rd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 760–782. McGraw-Hill, New York (1972).

    Google Scholar 

  144. K. Suzuki and W. D. Grover, Krabbe’s leukodystrophy (globoid cell leukodystrophy): An ultrastructural study, Arch. Neurol 22:385–396, (1970).

    Google Scholar 

  145. E. J. Yunis and R. E. Lee, The ultrastructure of globoid (Krabbe) leukodystrophy, Lab. Invest 21:415–419 (1969).

    Google Scholar 

  146. E. J. Yunis and R. E. Lee, Tubules of globoid leukodystrophy: A right-handed helix, Science 169:64–66 (1970).

    Google Scholar 

  147. A. Bischoff and J. Ulrich, Peripheral neurophathy in globoid cell leukodystrophy (Krabbe’s disease). Ultrastructural and histochemical findings, Brain 92:861–870 (1969).

    Google Scholar 

  148. G. Lyon, L. Jardin, and J. Aicardi, Étude au microscope electronique d’un nerf périphérique dans un cas de leucodystrophie de Krabbe, J. Neurol. Sci 12:263–274 (1971).

    Google Scholar 

  149. J. H. Austin, Studies in globoid (Krabbe) leukodystrophy. I. The significance of lipid abnormalities in white matter in eight globoid and thirteen control patients, Arch. Neurol 9:207–221 (1963).

    Google Scholar 

  150. K. Suzuki and K. Suzuki, in “Lysosomes and Storage Diseases” (H. G. Hers and F. van Hoof, eds.) Academic Press, New York (in press).

    Google Scholar 

  151. Y. Eto and K. Suzuki, Brain sphingoglycolipids in Krabbe’s globoid cell leukodystrophy, J. Neurochem 18:503–511 (1971).

    Google Scholar 

  152. J. M. Schibanoff, S. Kamoshita, and J. S. O’Brien, Tissue distribution of glycosphingolipids in a case of Fabry’s disease, J. Lipid Res 10:515–520 (1969).

    Google Scholar 

  153. Y. Eto, K. Suzuki, and K. Suzuki, Globoid cell leukodystrophy (Krabbe’s disease): Isolation of myelin with normal glycolipid composition, J. Lipid Res 11:473–479 (1970).

    Google Scholar 

  154. K. Suzuki and Y. Suzuki, Globoid cell leukodystrophy (Krabbe’s disease): Deficiency of galactocerebroside β-galactosidase, Proc. Natl. Acad. Sci 66:302–309 (1970).

    Google Scholar 

  155. K. Suzuki, Y. Suzuki, and Y. Eto, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 111–136, Academic Press, New York (1971).

    Google Scholar 

  156. J. Austin, K. Suzuki, D. Armstrong, R. O. Brady, B. K. Bachhawat, J. Schlenker, and D. Stumpf, Studies in globoid (Krabbe) leukodystrophy (GLD). V. Controlled enzymatic studies in ten human eases, Arch. Neurol 23:502–512 (1970).

    Google Scholar 

  157. Y. Suzuki and K. Suzuki, Krabbe’s globoid cell leukodystrophy: Deficiency of galactocerebrosidase in serum, leukocytes and fibroblasts, Science 171:73–75 (1971).

    Google Scholar 

  158. M. J. Malone, Deficiency in a degradative enzyme system in globoid leueodystrophy, Abst. First Meeting Am. Soc. Neurochem., Albuquerque, N.M, p. 56 (1970).

    Google Scholar 

  159. K. Suzuki, E. Schneider, and C. J. Epstein, In utero diagnosis of globoid cell leukodystrophy (Krabbe’s disease), Biochem. Biophys. Res. Commun 45:1363–1366 (1971).

    Google Scholar 

  160. K. Suzuki, Y. Suzuki, and T. Fletcher, Further studies of galactocerebroside β-galactosidase in globoid cell leukodystrophy, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp. 487–498. Plenum Press, New York (1972).

    Google Scholar 

  161. B. K. Bachhawat, J. Austin, and D. Armstrong, A cerebroside sulfotransferase deficiency in a human disorder of myelin, Biochem. J 104:15C–17C (1967).

    Google Scholar 

  162. J. H. Austin and D. Lehfeldt, Studies in globoid (Krabbe) leukodystrophy. III. Significance of experimentally-produced globoid-like elements in rat white matter and spleen, J. Neuropathol. Exptl. Neurol 24:265–289 (1965).

    Google Scholar 

  163. K. Suzuki, Ultrastructural study of experimental globoid cells, Lab. Invest 23:612–619 (1970).

    Google Scholar 

  164. K. Suzuki, Renal cerebroside in globoid cell leukodystrophy (Krabbe’s disease), Lipids 6: 433–436 (1971).

    Google Scholar 

  165. B. Hagberg, in “Brain Lipids and Lipoproteins, and the Leukodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 134–146, Elsevier, Amsterdam (1963).

    Google Scholar 

  166. T. von Hirsch and J. Peiffer, Über histologische Methoden in der Differentialdiagnose von Leucodystrophien und Lipidosen, Arch. Psychiat. Nervenkr 194:88–104 (1955).

    Google Scholar 

  167. R. D. Terry, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 3–25, Academic Press, New York (1971).

    Google Scholar 

  168. G. Aurebeck, K. Osterberg, M. Blaw, S. Chou, and E. Nelson, Electron microscopic observations on metachromatic leueodystrophy, Arch. Neurol 11:273–288 (1964).

    Google Scholar 

  169. A. Grégoire, O. Périer, and P. Dustin, Jr., Metachromatic leueodystrophy, an electron microscopic study, J. Neuropathol. Exptl. Neurol 25:617–636 (1966).

    Google Scholar 

  170. A. Résibois-Grégoire, Electron microscopic studies of metachromatic leueodystrophy. II. Compound nature of the inclusions, Acta Neuropathol 9:244–253 (1967).

    Google Scholar 

  171. H. de Webster, Schwann cell alterations in metachromatic leueodystrophy. Preliminary phase and electron microscopic observations, J. Neuropathol. Exptl. Neurol 21:534–554 (1962).

    Google Scholar 

  172. A. Résibois, Electron microscopic study of metachromatic leueodystrophy. III. Lysosomal nature of the inclusions, Acta Neuropathol 13:149–156 (1969).

    Google Scholar 

  173. K. Suzuki and K. Suzuki, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 7, pp. 131–142. Plenum Press, New York (1972).

    Google Scholar 

  174. H. Jatzkewitz, Zwei Typen von Cerebrosid-schwefelsäureestern als sog. “Prälipoide” und Speichersubstanzen bei der Leukodystrophie, Typ Scholtz (metachromatische Form der diffusen Sklerose), Z. Physiol. Chem 311:279–282 (1958).

    Google Scholar 

  175. J. H. Austin, Metachromatic sulfatides in cerebral white matter and kidney, Proc. Soc. Exptl. Biol 100:361–364 (1959).

    Google Scholar 

  176. M. Malone, P. Stoffyn, and H. Moser, Structural studies on sulfatide in metachromatic leucodystrophy, J. Neurochem 13:1033–1036 (1966).

    Google Scholar 

  177. B. Hagberg, P. Sourander, L. Svennerholm, and H. Voss, Late infantile metachromatic leucodystrophy of the genetic type, Acta Paediat 49:135–153 (1960).

    Google Scholar 

  178. B. Hagberg, P. Sourander, and L. Svennerholm, Sulfatide lipidosis in childhood. Report of a case investigated during life and at autopsy, Am. J. Dis. Child 104:644–656 (1962).

    Google Scholar 

  179. H. Jatzkewitz, H. Pilz, and H. Holländer, Biochemische und vergleichende histochemische Untersuchungen in umschriebenen Gebieten des Gehirns bei Fallen von adulter und infantiler metachromatischer Leukodystrophie, Acta Neuropathol 4:75–89 (1964).

    Google Scholar 

  180. J. S. O’Brien and E. L. Sampson, Myelin membrane: A molecular abnormality, Science 150:1613 (1965).

    Google Scholar 

  181. W. T. Norton, The variation in the chemical composition in myelin in disease and during development, Charing Cross Hosp. Gazette 8:3–8 (1967).

    Google Scholar 

  182. K. Suzuki, K. Suzuki, and G. C. Chen, Metachromatic leucodystrophy: Isolation and chemical analysis of metachromatic granules, Science 151:1231–1233 (1966).

    Google Scholar 

  183. K. Suzuki, K. Suzuki, and G. C. Chen, Isolation and chemical characterization of metachromatic granules from a brain with metachromatic leukodystrophy, J. Neuropathol. Exptl. Neurol 26:537–550 (1967).

    Google Scholar 

  184. J. Austin, D. Armstrong, S. Fouch, C. Mitchell, D. Stumpf, L. Shearer, and O. Briner, Metachromatic leukodystrophy. VIII. MLD in adults; diagnosis and pathogenesis, Arch. Neurol 18:225–240 (1968).

    Google Scholar 

  185. M. J. Malone and P. Stoffyn, Peripheral nerve glycolipids in metachromatic leukodystrophy, Neurology 17:1033–1040 (1967).

    Google Scholar 

  186. E. Martensson, A. Percy, and L. Svennerholm, Kidney glycolipids in late infantile metachromatic leucodystrophy, Acta Paediat. Scand 55:1–9 (1966).

    Google Scholar 

  187. J. H. Austin, A. S. Balasubramanian, T. N. Pattabiraman, S. Saraswathi, D. K. Basu, and B. K. Bachhawat, A controlled study of enzymic activities in three human disorders of glycolipid metabolism, J. Neurochem 10:805–816 (1963).

    Google Scholar 

  188. J. Austin, D. Armstrong, and L. Shearer, Metachromatic form of diffuse cerebral sclerosis. V. The nature and significance of low sulfatase activity: A controlled study of brain, liver and kidney in four patients with metachromatic leukodystrophy (MLD), Arch. Neurol 13:593–614 (1965).

    Google Scholar 

  189. E. Mehl and H. Jatzkewitz, Evidence for the genetic block in metachromatic leucodystrophy (ML), Biochem. Biophys. Res. Commun 19:407–411 (1965).

    Google Scholar 

  190. J. Austin, D. McAfee, and L. Shearer, Metachromatic form of diffuse cerebral sclerosis. IV. Low sulfatase activity in the urine of nine living patients with metachromatic leukodystrophy (MLD), Arch. Neurol 12:447–455 (1965).

    Google Scholar 

  191. A. L. Percy and R. O. Brady, Metachromatic leukodystrophy: Diagnosis with samples of venous blood, Science 161:594–595 (1968).

    Google Scholar 

  192. M. T. Porter, A. L. Fluharty, and H. Kihara, Metachromatic leukodystrophy: Arylsulfatase A deficiency in skin fibroblast cultures, Proc. Natl. Acad. Sci 62:887–891 (1969).

    Google Scholar 

  193. J. G. Leroy, J. Dumon, and J. Radermecker, Deficiency of arylsulfatase A in leucocytes and skin fibroblasts in juvenile metachromatic leucodystrophy, Nature 226:553–554 (1970).

    Google Scholar 

  194. N. H. Bass, E. J. Witmer, and F. E. Dreifuss, A pedigree study of metachromatic leukodystrophy. Biochemical identification of the carrier state, Neurology 20:52–62 (1970).

    Google Scholar 

  195. N. Taniguchi and I. Namba, Enzymatic abnormality of the carrier state in metachromatic leukodystrophy, Clin. Chim. Acta 29:375–379 (1970).

    Google Scholar 

  196. F. Gabreëls, K. Lamers, J. Kok, M. Loonen, and E. Lommen, The biochemical differentiation between heterozygote carriers of metachromatic leucodystrophy and normal persons, Neuropädiatrie 2:461–469 (1971).

    Google Scholar 

  197. D. Stumpf and J. Austin, Metachromatic leukodystrophy (MLD). IX. Qualitative and quantitative differences in urinary arylsulfatase A in different forms of MLD, Arch. Neurol 24:117–124 (1971).

    Google Scholar 

  198. M. Mossakowski, G. Mathieson, and J. N. Cumings, On the relationships of metachromatic leucodystrophy and amaurotic idiocy, Brain 84:585–604 (1961).

    Google Scholar 

  199. J. H. Austin, in “Medical Aspects of Mental Retardation” (C. H. Carter, ed.) pp. 768–812, Charles C. Thomas, Springfield, Ill. (1965).

    Google Scholar 

  200. M. Bischel, J. Austin, and M. Kemeny, Metachromatic leukodystrophy (MLD). VII. Elevated sulfated acid Polysaccharide levels in urine and postmortem tissues, Arch. Neurol 15:13–28 (1966).

    Google Scholar 

  201. F. Lüthy, J. Ulrich, F. Regli, and W. Isler, Amaurotic idiocy with metachromatic change in the white matter, Proc. Fifth Internat. Congr. Neuropathol, pp. 125–130, Excerpta Medica Foundation, Amsterdam (1966).

    Google Scholar 

  202. S. Thieffry, G. Lyon, and P. Maroteaux, Leucodystrophie metachromatique (sulfatidose) et mucopolysaccharidose associées chez un mmalade, Rev. Neurol 114:193–200 (1966).

    Google Scholar 

  203. S. Thieffry, G. Lyon, and P. Maroteaux, Encéphalopathie métabolique associant une mucopolysaccharidose et une sulfatidose, Arch. Franc. Pédiat 24:425–432 (1967).

    Google Scholar 

  204. S. Rampini, W. Isler, K. Baerlocher, A. Bischoff, J. Ulrich, and H. J. Plüss, Die Kombination von metachromatischer Leukodystrophie und Mukopolysaccharidose als selbständiges Krankheitzbild (Mukosulfatidose), Helv. Paediat. Acta 25:436–461 (1970).

    Google Scholar 

  205. J. V. Murphy, H. J. Wolfe, E. A. Balazs, and H. W. Moser, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 67–110, Academic Press, New York (1971).

    Google Scholar 

  206. K. Suzuki, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 215–230, Pergamon Press, Oxford (1967).

    Google Scholar 

  207. K. Suzuki, in “Handbook of Neurochemistry” (A. Lajtha, ed.) pp. 17–32. Vol. 7, Plenum Press, New York (1972).

    Google Scholar 

  208. G. Dawson and A. O. Stein, Lactosyl ceramidosis: Catabolic enzyme defect of glycosphingolipid metabolism, Science 170:556–558 (1970).

    Google Scholar 

  209. G. Dawson and A. O. Stein, in “ve involvement in Fabry’s disease”, Arch. Neurol 22:81–88 (1970).

    Google Scholar 

  210. M. W. Hartley, R. E. Miller, H. J. Dempsy, and J. F. Caroll, Dysphospholipidosis in Fabry’s disease: A light and electron microscopic study, Ala. J. Med. Sci 1:361–367 (1964).

    Google Scholar 

  211. P. Frost, Y. Tanaka, and G. L. Spaeth, Fabry’s disease’ glycolipid lipidosis: Histochemical and electronmicroscopic studies of two cases, Am. J. Med 40:618–627 (1966).

    Google Scholar 

  212. A. I. Rae, J. C. Lee, and J. Hopper, Jr., Clinical and electron-microscopic studies of a case of glycolipid lipidosis (Fabry’s disease), J. Clin. Pathol 20:21–27 (1967).

    Google Scholar 

  213. J. D. Bagdade, F. Parker, P. O. Ways, T. E. Morgan, D. Lagunoff, and S. Eidelman, Fabry’s disease: A correlative clinical, morphologic and biochemical study, Lab. Invest 18:681–688 (1968).

    Google Scholar 

  214. M. Tondeur and A. Résibois, Fabry’s disease in children, an electron microscopic study, Virchows Arch. Abt. B, Zellpathol 2:239–254 (1969).

    Google Scholar 

  215. M. Ruiter, Histological investigation of the skin in angiokeratoma corporis diffusum with particular regard to the associated disturbance of Phosphatide metabolism, Dermatologia 109:272–286 (1954).

    Google Scholar 

  216. C. C. Sweeley and B. Klionsky, Fabry’s disease: Classification as a sphingolipidosis and partial characterization of a novel glycolipid, J. Biol. Chem 238:3148–3150 (1963).

    Google Scholar 

  217. C. C. Sweeley and B. Klionsky, in “The Metabolic Basis of Inherited Disease,” 2nd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 618–632, McGraw-Hill, New York (1966).

    Google Scholar 

  218. H. O. Christensen Lou, A biochemical investigation of angiokeratoma corporis diffusum, Acta Pathol. Microbiol. Scand 68:332–342 (1966).

    Google Scholar 

  219. V. W. Steward and C. Hitschcock, Fabry’s disease, Pathol. Europ 3:377–386 (1968).

    Google Scholar 

  220. T. Miyatake, A study on glycolipids in Fabry’s disease, Jap. J. Exptl. Med 39:35–45 (1969).

    Google Scholar 

  221. S. Handa, T. Ariga, T. Miyatake, and T. Yamakawa, Presence of α-anomeric glycosidic configuration in the glycolipids accumulated in kidney with Fabry’s disease, J. Biochem 69:625–627 (1971).

    Google Scholar 

  222. I. Bensaude, J. Callahan, and M. Philippart, Fabry’s disease as an α-galactosidosis: Evidence for an a-configuration in trihexosyl ceramide, Biochem. Biophys. Res. Commun 43:913–918 (1971).

    Google Scholar 

  223. J. T. R. Clarke, L. S. Wolfe, and A. S. Perlin, Evidence for a terminal α-D-galactopyranosyl residue in galactosylgalactosylglucosylceramide from human kidney, J. Biol. Chem 246:5563–5569 (1971).

    Google Scholar 

  224. H. Loeb, G. Jonniaux, M. Tondeur, P. Danis, P. E. Gregoire, and P. Wolf, Étude clinique, biochimique et ultrastructurelle de la maladie de Fabry chez l’enfant, Helv. Paediat. Acta 23:269–286 (1968).

    Google Scholar 

  225. R. Matalon, A. Dorfman, G. Dawson, and C. C. Sweeley, Glycolipid and mucopolysaccharide abnormality in fibroblasts of Fabry’s disease, Science 164:1522–1523 (1969).

    Google Scholar 

  226. M. Philippart, L. Sarlieve, and A. Manacorda, Urinary glycolipids in Fabry’s disease, Pediatrics 43:201–206 (1969).

    Google Scholar 

  227. R. J. Desnick, G. Dawson, S. Desnick, C. C. Sweeley, and W. Krivit, Diagnosis of glycosphingolipidoses by urinary-sediment analysis, New Engl. J. Med 284:739–744 (1971).

    Google Scholar 

  228. R. O. Brady, A. E. Gal, R. M. Bradley, E. Martensson, A. L. Warshaw, and L. Loster, Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency, New Engl. J. Med 276:1163–1167(1967).

    Google Scholar 

  229. J. A. Kint, Fabry’s disease: Alpha-galactosidase deficiency, Science 167:1268–1269 (1970).

    Google Scholar 

  230. G. Romeo and B. R. Migeon, Genetic inactivation of the α-galactosidase locus in carriers of Fabry’s disease, Science 170:180–181 (1970).

    Google Scholar 

  231. C. A. Mapes, R. L. Anderson, and C. C. Sweeley, Galactosylgalactosylglucosylceramide: Galactosyl hydrolase in normal human plasma and its absence in patients with Fabry’s disease, FEBS Letters 7:180–182 (1970).

    Google Scholar 

  232. R. O. Brady, B. W. Uhlendorf, and C. B. Jacobson, Fabry’s disease: Antenatal detection, Science 172:174–175 (1971).

    Google Scholar 

  233. L. A. Lockman, W. Krivit, and R. J. Desnick, Relief of the painful crises of Fabry’s disease by diphenylhydantoin, Neurology 21:423 (1971).

    Google Scholar 

  234. H. Jatzkewitz and K. Sandhoff, On a biochemically special form of infantile amaurotic idiocy, Biochim. Biophys. Acta 70:354–356 (1963).

    Google Scholar 

  235. J. S. O’Brien, M. B. Stern, B. H. Landing, J. K. O’Brien, and G. N. Donnell, Generalized gangliosidosis. Another inborn error of ganglioside metabolism? Am. J. Dis. Child 109: 338–346 (1965).

    Google Scholar 

  236. N. K. Gonatas and J. Gonatas, Ultrastructural and biochemical observations on a case of systemic late infantile lipidosis and its relationship to Tay-Sachs disease and gargoylism, J. Neuropathol. Exptl. Neurol 24:318–340 (1965).

    Google Scholar 

  237. B. H. Landing and J. H. Rubinstein, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 1–13, Academic Press, New York (1962).

    Google Scholar 

  238. K. Suzuki, K. Suzuki, and G. C. Chen, Morphological, histochemical and biochemical studies on a case of systemic late infantile lipidosis (generalized gangliosidosis), J. Neuropathol. Exptl. Neurol 27:15–38 (1968).

    Google Scholar 

  239. K. Suzuki, K. Suzuki, and G. C. Chen, in “Cerebral Lipidoses II” (A. Nunes Vicente, P. Dustin, and A. Lowenthal, eds.) pp. 273–294, Présses Académiques Européenes, Brussels (1968).

    Google Scholar 

  240. R. Sacrez, J. G. Juif, J. M. Gigonnet, and J. E. Grüner, La maladie de Landing, ou idiotie amaurotique infantile précose avec gangliosidose généralisée de type Gmi, Pédiatrie 22: 143–162 (1967).

    Google Scholar 

  241. H. Roels, J. Quatacker, A. Kint, H. Vander Eecken, and L. Vrints, Generalized gangliosidosis-Gmi (Landing disease) II. Morphological study, Europ. Neurol 3:129–160 (1970).

    Google Scholar 

  242. C. R. Scott, D. Lagunoff, and B. F. Trump, Familial neurovisceral lipidosis, J. Pediat 71: 357–366 (1967).

    Google Scholar 

  243. S. Takebayashi, D. B. von Bassewitz, and H. Themann, Feinstrukturelle Veränderungen der Niere bei generalisierter Gangliosidose Gmi. Virchows Arch. Abt. B, Zellpathol 5: 301–313 (1970).

    Google Scholar 

  244. P. Hubain, E. Adam, A. Dewelle, G. Druez, J.-P. Farriaux, and A. Dupont, Étude d’une Observation de gangliosidose à Gmi, Helv. Paediat. Acta 24:337–351 (1969).

    Google Scholar 

  245. K. Suzuki, K. Suzuki, and S. Kamoshita, Chemical pathology of Gmi-gangliosidosis (generalized gangliosidosis), J. Neuropathol. Exptl. Neurol 28:25–73 (1969).

    Google Scholar 

  246. R. Ledeen, K. Salsman, J. Gonatas, and A. Taghavy, Structure comparison of the major monosialogangliosides from brains of normal human, gargoylism, and late infantile systemic lipidosis. Part I, J. Neuropathol. Exptl. Neurol 24:341–351 (1965).

    Google Scholar 

  247. K. Suzuki and G. C. Chen, Brain ceramide hexosides in Tay-Sachs disease and generalized gangliosidosis (Gmi-gangliosidosis), J. Lipid Res 8:105–113 (1967).

    Google Scholar 

  248. Y. Suzuki, A. C. Crocker, and K. Suzuki, Gmi-gangliosidosis: Correlation of clinical and biochemical data, Arch. Neurol 24:58–64 (1971).

    Google Scholar 

  249. K. Suzuki, Cerebral Gmi-gangliosidosis: Chemical pathology of visceral organs, Science 159:1471–1472 (1968).

    Google Scholar 

  250. L. S. Wolfe, J. Callahan, J. S. Fawcett, F. Andermann, and C. R. Scriver, Gmi-gangliosidosis without chondrodystrophy or visceromegaly, Neurology 20:23–44 (1970).

    Google Scholar 

  251. J. W. Callahan and L. S. Wolfe, Isolation and characterization of keratan sulfates from the liver of a patient with Gmi-gangliosidosis type I, Biochim. Biophys. Acta 215:527–543 (1970).

    Google Scholar 

  252. P. Seringe, B. Plainfosse, E. Mautmann, J. Lorilloux, G. Calamy, J.-P. Berry, and J.-M. Watchi, Gangliosidose généralisée, du type Norman-Landing, à Gmi, Ann. Pédiat 44: 685–704 (1968).

    Google Scholar 

  253. S. Okada and J. S. O’Brien, Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160:1002–1004 (1968).

    Google Scholar 

  254. G. Dacremont and J. A. Kint, Gmi-ganglioside accumulation and β-galactosidase deficiency in a case of Gmi-gangliosidosis (Landing disease), Clin. Chim. Acta 21:421–425 (1968).

    Google Scholar 

  255. F. van Hoof and H. G. Hers, The abnormalities of lysosomal enzymes in mucopolysaccharidoses, Europ. J. Biochem 7:34–44 (1968).

    Google Scholar 

  256. R. O. Brady, J. S. O’Brien, R. M. Bradley, and A. E. Gal, Sphingolipid hydrolases in brain tissue of patients with generalized gangliosidosis, Biochim. Biophys. Acta 210:193–195 (1970).

    Google Scholar 

  257. M. C. MacBrinn, S. Okada, M. W. Ho, C. C. Hu, and J. S. O’Brien, Generalized gangliosidosis: Impaired cleavage of galactose from a mucopolysaccharide and a glycoprotein, Science 163:946–947 (1969).

    Google Scholar 

  258. C. Hooft, R. F. Vlietinck, G. Dacremont, and J. A. Kint, Gmi-gangliosidosis type II, Europ. Neurol 4:1–21 (1970).

    Google Scholar 

  259. H. S. Singer and I. A. Schafer, White cell β-galactosidase activity, New Engl. J. Med 282: 571 (1970).

    Google Scholar 

  260. G. H. Thomas, β-D-Galactosidase in human urine: Deficiency in generalized gangliosidosis, J. Lab. Clin. Med 74:725–731 (1969).

    Google Scholar 

  261. H. R. Sloan, B. W. Uhlendorf, C. B. Jacobson, and D. S. Frederickson, β-Galactosidase in tissue culture derived from human skin and bone marrow: Enzyme defect in Gmi-gangliosidosis, Pediat. Res 3:532–537 (1969).

    Google Scholar 

  262. J. W. Callahan, L. Pinsky, and L. S. Wolfe, Gmi-gangliosidosis (type II): Studies on a fibroblast cell strain, Biochem. Med 4:295–316 (1970).

    Google Scholar 

  263. D. M. Derry, J. S. Fawcett, F. Andermann, and L. S. Wolfe, Late infantile systemic lipidosis, major monosialogangliosidosis, delineation of two types, Neurology 18:340–348 (1968).

    Google Scholar 

  264. J. S. O’Brien, S. Okada, M. W. Ho, D. L. Fillerup, M. L. Veath, and K. Adams, Ganglioside storage diseases, Fed. Proc 30:956–969 (1971).

    Google Scholar 

  265. I. A. Schafer, Personal communication.

    Google Scholar 

  266. L. Pinsky, E. Powell, and J. Callahan, Gmi-gangliosidosis types 1 and 2: Enzymatic differences in cultured fibroblasts, Nature 228:1093–1095 (1970).

    Google Scholar 

  267. S. M. Aronson, in “Tay-Sachs Disease” (B. W. Volk, ed.) pp. 118–153, Grune and Stratton, New York (1964).

    Google Scholar 

  268. B. W. Volk, in “Tay-Sachs Disease” (B. W. Volk, ed.) pp. 36–67, Grune and Stratton, New York (1964).

    Google Scholar 

  269. S. S. Lazarus, B. J. Wallace, and B. W. Volk, Neuronal enzyme alterations in Tay-Sachs disease, Am. J. Pathol 41:579–591 (1962).

    Google Scholar 

  270. R. D. Terry and M. Weiss, Studies in Tay-Sachs disease: II. Ultrastructure of cerebrum, J. Neuropathol. Exptl. Neurol 22:18–55 (1963).

    Google Scholar 

  271. B. J. Wallace, B. W. Volk, L. Schneck, and H. Kaplan, Fine structural localization of two hydrolytic enzymes in the cerebellum of children with lipidoses, J. Neuropathol. Exptl. Neurol 25:76–96 (1966).

    Google Scholar 

  272. M. Adachi, J. Torii, L. Schneck, and B. W. Volk, The fine structure of fetal Tay-Sachs disease, Arch. Pathol 91:48–54 (1971).

    Google Scholar 

  273. E. Klenk, Beiträge zur Chemie der Lipoidosen, Niemann-Picksche Krankheit und amaurotische Idiotie, Z. Physiol. Chem 262:128–143 (1939).

    Google Scholar 

  274. E. Klenk, Über die Ganglioside des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs, Ber. Deutsch. Chem. Ges 75:1632–1636 (1942).

    Google Scholar 

  275. L. Svennerholm, The chemical structure of normal brain and Tay-Sachs gangliosides, Biochem. Biophys. Res. Commun 9:436–441 (1962).

    Google Scholar 

  276. R. Ledeen and K. Salsman, Structure of the Tay-Sachs’ ganglioside, I. Biochemistry 4: 2225–2232 (1965).

    Google Scholar 

  277. O. Eeg-Olofsson, K. Kristensson, P. Sourander, and L. Svennerholm, Tay-Sachs disease. A generalized metabolic disorder, Acta Paediat. Scand 55:546–562 (1966).

    Google Scholar 

  278. K. Sandhoff, Variation of β-N-acetylhexosaminidase pattern in Tay-Sachs disease, FEBS Letters 4:351–354 (1969).

    Google Scholar 

  279. S. Okada and J. S. O’Brien, Tay-Sachs disease: Generalized absence of a β-d-N-acetylhexosaminidase component, Science 165:698–700 (1969).

    Google Scholar 

  280. D. Robinson and J. L. Stirling, N-acetyl-β-glucosaminidases in human spleen, Biochem. J 107:321–327 (1968).

    Google Scholar 

  281. E. H. Kolodny, R. O. Brady, and B. W. Volk, Demonstration of an alteration of ganglioside metabolism in Tay-Sachs disease, Biochem. Biophys. Res. Commun 37:526–531 (1969).

    Google Scholar 

  282. J. S. O’Brien, S. Okada, A. Chen, and D. L. Fillerup, Tay-Sachs disease: Detection of heterozygotes and homozygotes by serum hexosaminidase assay, New Engl. J. Med 283: 15–20(1970).

    Google Scholar 

  283. Y. Suzuki, P. H. Berman, and K. Suzuki, Detection of Tay-Sachs disease heterozygotes by assay of hexosaminidase A in serum and leucocytes, J. Pediat 78:643–647 (1971).

    Google Scholar 

  284. L. Schneck, J. Friedland, C. Valenti, M. Adachi, D. Amsterdam, and B. W. Volk, Prenatal diagnosis of Tay-Sachs disease, Lancet 1:582–584 (1970).

    Google Scholar 

  285. J. S. O’Brien, S. Okada, D. L. Fillerup, M. L. Veath, B. Adornato, P. H. Brenner, and J. G. Leroy, Tay-Sachs disease: Prenatal diagnosis, Science 172:61–64 (1971).

    Google Scholar 

  286. K. Sandhoff, U. Andreae, and H. Jatzkewitz, Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs, Life Sci 7:283–288 (1968).

    Google Scholar 

  287. H. Bernheimer and F. Seitelberger, Über das Verhalten der Ganglioside im Gehirn bei 2 Fällen von spatinfantiler amaurotischer Idiotie, Wiener. Klin. Wschr 80:163–169 (1968).

    Google Scholar 

  288. B. W. Volk, M. Adachi, L. Schneck, A. Saifer, and W. Kleinberg, G5-ganglioside variant of systemic late infantile lipidosis, Arch. Pathol 87:393–403 (1969).

    Google Scholar 

  289. K. Suzuki, K. Suzuki, I. Rapin, Y. Suzuki, and N. Ishii, Juvenile Gm2-gangliosidosis. Clinical variant of Tay-Sachs disease or a new disease, Neurology 20:190–204 (1970).

    Google Scholar 

  290. J. H. Menkes, J. S. O’Brien, S. Okada, J. Grippo, J. M. Andrews, and P. A. Cancilla, Juvenile Gm2-gangliosidosis. Biochemical and ultrastructural studies on a new variant of Tay-Sachs disease, Arch. Neurol 25:14–22 (1971).

    Google Scholar 

  291. C. Klibansky, A. Saifer, N. I. Feldman, L. Schneck, and B. W. Volk, Cerebral lipids in a case of systemic Gm2-gangliosidosis of a late infantile type, J. Neurochem 17:339–346 (1970).

    Google Scholar 

  292. Y. Suzuki and K. Suzuki, Partial deficiency of hexosaminidase component A in juvenile GM2-gangliosidosis, Neurology 20:848–851 (1970).

    Google Scholar 

  293. L. Schneck, J. Friedland, M. Pourfar, A. Saifer, and B. W. Volk, Hexosaminidase activities in a case of systemic Gm2-gangliosidosis of late infantile type, Proc. Soc. Exptl. Biol. Med 133:997–998 (1970).

    Google Scholar 

  294. E. P. Young, R. B. Ellis, B. D. Lake, and A. D. Patrick, Tay-Sachs disease and related disorders: Fractionation of brain N-acetyl-β-hexosaminidase on DEAE-cellulose, FEBS Letters 9:1–4 (1970).

    Google Scholar 

  295. S. Okada, M. L. Veath, and J. S. O’Brien, Juvenile GM2-gangliosidosis: Partial deficiency of hexosaminidase A, J. Pediat 77:1063–1065 (1970).

    Google Scholar 

  296. K. Sandhoff, U. Andreae, and H. Jatzkewitz, in “Cerebral Lipidoses II” (A. Nunes Vicente, P. Dustin, and A. Lowenthal, eds.) pp. 164–171, Presses Académiques Européennes, Brussels (1968).

    Google Scholar 

  297. H. Pilz, D. Müller, K. Sandhoff, and V. ter Meulen, Tay-Sachssche Krankheit mit Hex-osaminidase-Defekt, Deutsch. Med. Wschr 39:1833–1839 (1968).

    Google Scholar 

  298. Y. Suzuki, J. C. Jacob, K. Suzuki, K. M. Kutty, and K. Suzuki, Gm2-gangliosidosis with total hexosaminidase deficiency, Neurology 21:313–328 (1971).

    Google Scholar 

  299. K. Sandhoff and H. Jatzkewitz, The chemical pathology of Tay-Sachs disease, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp. 305–319. Plenum Press, New York (1972).

    Google Scholar 

  300. S. Farber, A lipid metabolic disorder — disseminated “lipogranulomatosis” — a syndrome with similarity to, and important differences from, Niemann-Pick and Hand-Schuller-Christian disease, Am. J. Dis. Child 84:499–500 (1952).

    Google Scholar 

  301. S. Farber, J. Cohen, and L. Uzman, Lipogranulomatosis; a new lipo-glycoprotein storage disease, J. Mount Sinai Hosp 24:816–837 (1957).

    Google Scholar 

  302. H. W. Moser, A. L. Prensky, H. J. Wolfe, and N. P. Rosman, Farber’s lipogranulomatosis. Report of a case and demonstration of an excess of free ceramide and ganglioside, Am. J. Med 47:869–890 (1969).

    Google Scholar 

  303. A. L. Prensky, G. Ferreira, S. Carr, and H. W. Moser, Ceramide and ganglioside accumulation in Farber’s lipogranulomatosis, Proc. Soc. Exptl. Biol. Med 126:725–728 (1967).

    Google Scholar 

  304. K. Samuelsson and R. Zetterström, Ceramides in a patient with lipogranulomatosis (Farber’s disease) with chronic course, Scand. J. Clin. Lab. Invest 27:393–405 (1971).

    Google Scholar 

  305. K. Samuelsson, R. Zetterström, and B. I. Ivemark, Studies on a case of lipogranulomatosis (Farber’s disease) with protracted course, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp.533–548, Plenum Press, New York (1972).

    Google Scholar 

  306. P. Durand, C. Borrone, and G. Delia Cella, Fucosidosis, J. Pediat 75:665–674 (1969).

    Google Scholar 

  307. H. Loeb, M. Tondeur, G. Jonniaux, S. Mockel-Pohl, and E. Vamos-Hurwitz, Biochemical and ultrastructural studies in a case of mucopolysaccharidosis “F” (fucosidosis), Helv. Paediat. Acta 24:519–537 (1969).

    Google Scholar 

  308. G. Dawson and J. W. Spranger, Fucosidosis: A glycosphingolipidosis, New Engl. J. Med 285:122 (1971).

    Google Scholar 

  309. W. Zeman and P. Dyken, Neuronal ceroid-lipofuscinosis (Batten’s disease): Relationship to amaurotic family idiocy? Pediatrics 44:570–583 (1969).

    Google Scholar 

  310. H. G. Hers, Inborn lysosomal diseases, Gastroenterology 48:625–633 (1965).

    Google Scholar 

  311. S. R. Korey and J. Gonatas, Separation of human brain gangliosides, Life Sci 2:296–302 (1963).

    Google Scholar 

  312. S. Hammarström, On the biosynthesis of cerebrosides: nonenzymatic N-acylation of psychosine by stearoyl coenzyme A, FEBS Letters 21:259–263 (1972).

    Google Scholar 

  313. M. Sugita, J. T. Dulaney, and H. W. Moser, Ceramidase deficiency in Farber’s disease (lipogranulomatosis), Science 178:110–1102 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Suzuki, K., Suzuki, K. (1973). Disorders of Sphingolipid Metabolism. In: Gaull, G.E. (eds) Biology of Brain Dysfunction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2670-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2670-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2672-4

  • Online ISBN: 978-1-4684-2670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics