Skip to main content

Pathophysiology of Anoxic Brain Damage

  • Chapter
Biology of Brain Dysfunction

Abstract

In clinical medicine, anoxia and ischemia rank near the top as common causes of brain injury under circumstances that affect every period of life from the stresses and strains of birth to the stroke-prone years of old age. Every biologist knows that the brain depends overwhelmingly on oxygen to generate its energy supply, and this constant requirement has often led to the viewpoint that anoxia and ischemia damage nervous tissues by identical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. F. Jöbsis, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. H. Rahn, eds.), Vol. 1, pp. 63–124, American Physiological Society, Washington, D. C., 1965.

    Google Scholar 

  2. H. McIlwain, “Biochemistry and the Central Nervous System,” J. & A. Churchill, Ltd., London, 1966.

    Google Scholar 

  3. H. S. Bachelard and H. Mcllwain, in“Comprehensive Biochemistry” (M. Florkin and E. H. Stotz, eds.), Vol. 17, pp. 191–218, Elsevier, Amsterdam, 1969.

    Google Scholar 

  4. R. Balázs, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 1–36, Plenum Press, New York, 1970.

    Google Scholar 

  5. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30, 1964.

    Google Scholar 

  6. C. Crone, Facilitated transfer of glucose from blood into brain tissue, J. Physiol. (London) 181:103–113, 1965.

    Google Scholar 

  7. R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206:836–844, 1964.

    Google Scholar 

  8. L. Sokoloff, in“Handbook of Physiology—Neurophysiology” (J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. 3, pp. 1843–1864, American Physiological Society, Washington, D. C., 1960.

    Google Scholar 

  9. C. F. Schmidt, in“Oxygen in the Animal Organism” (F. Dickens and E. Neil, eds.), Vol. 31, pp. 433–446, Pergamon Press, London, 1964.

    Google Scholar 

  10. E. Opitz and M. Schneider, Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen, Ergeh. Physiol. 46:126–260, 1950.

    Google Scholar 

  11. U.V. Nair, D. Palm, and L. J. Roth, Relative vascularity of certain anatomical areas of the brain and other organs of the rat, Nature 188:497–498, 1960.

    Google Scholar 

  12. S. S. Kety, Circulation and metabolism of the human brain in health and disease, Am. J. Med. 3:205–217, 1950.

    Google Scholar 

  13. N. A. Lassen, Cerebral blood flow and oxygen consumption in man, Physiol. Rev. 39:183–238, 1959.

    Google Scholar 

  14. J. W. Woodbury, in“Neurophysiology” (T. C. Ruch, H. D. Patton, J. W. Woodbury, and A. L. Towe, eds.), 1–25, W. B. Saunders Co., Philadelphia, 1968.

    Google Scholar 

  15. A. L. Lehninger, “Bioenergetics,” W. A. Benjamin, Inc., New York, 1965.

    Google Scholar 

  16. R. D. Keynes and G. W. Maisel, The energy requirement for sodium extrusion from a frog muscle, Proc. Roy. Soc. 142:383–392, 1954.

    Google Scholar 

  17. A. N. Davison, in“Applied Neurochemistry” (A.-N. Davison and J. Dobbing, eds.), pp. 222–250, F. A. Davis Co., Philadelphia, 1968.

    Google Scholar 

  18. R. Whittam, Active cation transport as a pace-maker of respiration, Nature 191:603–604, 1961.

    Google Scholar 

  19. H. Hirsch, W. Krenkel, M. Schneider, and F. Schnellbächer, Der Sauerstoffverbrauch des Warmblütergehirns bei Sauerstoffmangel durch Ischämie und der Mechanismus der Mangelwirkung, Pflügers Arch. Ges. Physiol. 261:402–408, 1955.

    Google Scholar 

  20. A. Leaf, Regulation of intracellular fluid volume and disease, Am. J. Med. 49:291–295, 1970.

    Google Scholar 

  21. W. G. Lennox, F. A. Gibbs, and E. L. Gibbs, Relationship of unconsciousness to cerebral blood flow and to anoxemia, Arch. Neurol. Psychiat. 34:1001–1013, 1935.

    Google Scholar 

  22. F. A. Gibbs, D. Williams, and E. L. Gibbs, Modification of the cortical frequency spectrum by changes in CO2, blood sugar, and O2, J. Neurophysiol. 3:49–58, 1940.

    Google Scholar 

  23. C. E. Schaertlin, Polarographische Messung der Sauerstoffspannung im Hirnblut bei Hypoxie, Helv. Physiol. Acta 19:155–262, 1961.

    Google Scholar 

  24. J. Ernsting, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 41–45, Blackwell Scientific Publications, Oxford, 1963.

    Google Scholar 

  25. A. Krogh, The number and distribution of capillaries in muscles with calculation of the oxygen pressure head necessary for supplying the tissue, J. Physiol. (London) 52:409–415, 1919.

    Google Scholar 

  26. M. Schneider, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 7–20, Blackwell Scientific Publications, Oxford, 1963.

    Google Scholar 

  27. S. S. Kety, Determinants of tissue oxygen tension, Fed. Proc. 16:666–670, 1957.

    Google Scholar 

  28. G. Thews, Die Sauerstoffdiffusion im Gehirn, Pflügers Arch. Ges. Physiol. 271:197–226, 1960.

    Google Scholar 

  29. G. Thews, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 27–35, Blackwell Scientific Publications, Oxford, 1963.

    Google Scholar 

  30. A. Bänder and M. Kiese, Die Wirkung des sauerstoffübertragenden Ferments in Mitochondrien aus Rattenlebern bei niedrigen Sauerstoffdrucken, Arch. Exptl. Pathol. Pharmakol. 224:312–321, 1955.

    Google Scholar 

  31. D. W. Lübbers, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), pp. 124–139, Georg Thieme Verlag, Stuttgart, 1968.

    Google Scholar 

  32. J. Grote, in“Hydrodynamik, Elektrolyt- und Säure-Basen-Haushalt im Liquor und Nervensystem” (R. Degkwitz, P. Duus, and G. Kienle, eds.), pp. 41–50, Georg Thieme Verlag, Stuttgart, 1967.

    Google Scholar 

  33. D. W. Lübbers and M. Kessler, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and W. Witzleb, eds.), pp. 90–99, Georg Thieme Verlag, Stuttgart, 1968.

    Google Scholar 

  34. B. Chance, P. Cohen, F. Jöbsis, and Brigitte Schoener, Intracellular oxidation-reduction states in vivo, Science 137:499–508, 1962.

    Google Scholar 

  35. B. Chance, B. Schoener, and F. Schindler, in“Oxygen in the Animal Organism” (F. Dickens and E. Neil, eds.), pp. 367–392, Pergamon Press, Oxford, 1964.

    Google Scholar 

  36. I. A. Silver, in“A Symposium on Oxygen Measurements in Blood and Tissues” (J. P. Payne and D. W. Hill, eds.), pp. 135–153, J. & A. Churchill, Ltd., London, 1966.

    Google Scholar 

  37. W. Grunewald, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), pp. 100–114, Georg Thieme Verlag, Stuttgart, 1968.

    Google Scholar 

  38. H. S. Bachelard, The subcellular distribution and properties of hexokinases in guinea-pig cerebral cortex, Biochem. J. 104:286–292, 1967.

    Google Scholar 

  39. H. S. Bachelard, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 251–260, William Heinemann Medical Books, Ltd., London, 1971.

    Google Scholar 

  40. W. Thorn, W. Isselhard, and B. Müldener, Glykogen-, Glucose- und Milchsäuregehalt in Warmblüterorganen bei unterschiedlicher Versuchsanordnung und anoxischer Belastung mit Hilfe optischer Fermentteste ermittelt, Biochem. Z. 331:545–562, 1959.

    Google Scholar 

  41. C. I. Mayman, P. D. Gatfield, and B. M. Breckenridge, The glucose content of the brain in anesthesia, J. Neurochem. 11:483–487, 1964.

    Google Scholar 

  42. G. Gercken and H. Preuss, The effect of breathing oxygen on the metabolism of the rat brain under normal and ischaemic conditions, J. Neurochem. 16:761–767, 1969.

    Google Scholar 

  43. J. Folbergrová, V. MacMillan, and B. K. Siesjö, The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ratio of the rat brain, J. Neurochem. in press.

    Google Scholar 

  44. J. Folbergrová, V. MacMillan, and B. K. Siesjö, The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain, J. Neurochem. in press.

    Google Scholar 

  45. D. L. Woodward, D. J. Reed, and D. M. Woodbury, Extracellular space of rat cerebral cortex, Am. J. Physiol. 212: 367–370, 1967.

    Google Scholar 

  46. D. P. Rall and J. D. Fenstermacher, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 29–33, Munksgaard, Copenhagen, 1971.

    Google Scholar 

  47. H. A. Krebs and H. L. Kornberg, A survey of the energy transformations in living matter, Ergeb. Physiol. Biol. Chem. Pharmacol. 49:212–298, 1957.

    Google Scholar 

  48. A. L. Lehninger, H. C. Sudduth, and J. R. Wiese, D-β- Hydroxybutyric dehydrogenase of mitochondria, J. Biol. Chem. 235:2450–2455, 1960.

    Google Scholar 

  49. J. R. Williamson, J. B. Clark, W. J. Nicklas, and B. Safer, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 381–411, Munksgaard, Copenhagen, 1971.

    Google Scholar 

  50. G. D. Greville, in“Carbohydrate Metabolism and Its Disorders” (F. Dickens, P. J. Randle, and W. J. Whelan, eds.), Vol. I, p. 297, Academic Press, London, 1968.

    Google Scholar 

  51. M. Klingenberg, Mitochondria metabolite transport, FEBS Letters 6:145–154, 1970.

    Google Scholar 

  52. T. Bücher and M. Klingenberg, Wege des Wasserstoffs in der lebendigen Organisation, Angew. Chem. 70:552–570, 1958.

    Google Scholar 

  53. W. E. Huckabee, Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glycose and of hyperventilation, J. Clin. Invest. 37:244–254, 1958.

    Google Scholar 

  54. H. J. Hohorst, Der Reduktionszustand des Diphosphopyridin-Nukleotidsystemes in lebendem Gewebe, Dissertation, University of Marburg, 1960.

    Google Scholar 

  55. D. H. Williamson, P. Lund, and H. A. Krebs, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103:514–527, 1967.

    Google Scholar 

  56. H. A. Krebs and R. L. Veech, in“Pyridine Nucleotide-Dependent Dehydrogenases” (H. Sund, ed.), pp. 413–438, Springer-Verlag, New York, 1970.

    Google Scholar 

  57. T. Bücher, in“Pyridine Nucleotide-Dependent Dehydrogenases” (H. Sund, ed.), pp. 439–461, Springer-Verlag, New York, 1970.

    Google Scholar 

  58. B. K. Siesjö, Å. Kjällquist, and N. N. Zwetnow, The CSF lactate/pyruvate ratio in cerebral hypoxia, Life Sci. 7:45–52, 1968.

    Google Scholar 

  59. L. Granholm and B. K. Siesjö, The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue, Acta Physiol. Scand. 75:257–266, 1969.

    Google Scholar 

  60. K. Messeter and B. K. Siesjö, The effect of acute and chronic hypercapnia upon labile phosphates and upon the lactate, pyruvate, α-ketoglutarate, and glutamate contents of the rat brain, Acta Physiol. Scand. 83:344–351, 1971.

    Google Scholar 

  61. B. K. Siesjö, J. Folbergrová, and V. MacMillan, The effect of hypercapnia upon intracellular pH in the brain evaluated with the H2CO3/HCO -3 method and from the creatine Phosphokinase equilibrium, J. Neurochem. in press.

    Google Scholar 

  62. A. E. Kaasik, L. Nilsson, and B. K. Siesjö, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:433–447, 1970.

    Google Scholar 

  63. A. E. Kaasik, L. Nilsson, and B. K. Siesjö, The effect of arterial hypotension upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:448–458, 1970.

    Google Scholar 

  64. L. Nilsson and B. K. Siesjö, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sorensen, eds.), pp. 428–436, Munksgaard, Copenhagen, 1971.

    Google Scholar 

  65. O. H. Lowry and J. V. Passonneau, The relationships between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–41, 1964.

    Google Scholar 

  66. E. W. Sutherland and G. A. Robinson, The role of cyclic-3′,5′-AMP in responses to catecholamines and other hormones, Pharmacol. Rev. 18:145–161, 1966.

    Google Scholar 

  67. B. M. Breckenridge, Cyclic AMP and drug action, Ann. Rev. Pharmacol. 10:19–34, 1970.

    Google Scholar 

  68. J. V. Passonneau and O. H. Lowry, P-fmctokinase and the control of the citric acid cycle, Biochem. Biophys. Res. Commun. 13:372–379, 1963.

    Google Scholar 

  69. O. H. Lowry and J. V. Passonneau, Kinetic evidence for multiple binding sites on phos-phofructokinase, J. Biol. Chem. 241:2268–2279, 1966.

    Google Scholar 

  70. H. K. Delcher and J. C. Shipp, Effect of pH, Pcozand bicarbonate on metabolism of glucose by perfused rat heart, Biochim. Biophys. Acta 121:250–260, 1966.

    Google Scholar 

  71. J. Scheuer and M. N. Berry, Effect of alkalosis on glycolysis in the isolated rat heart, Am. J. Physiol. 213:1143–1148, 1967.

    Google Scholar 

  72. W. H. Danforth, in“Control of Energy Metabolism” (B. Chance, R. W. Estabrook, and J. R. Williamson, eds.), pp. 287–297, Academic Press, New York, 1968.

    Google Scholar 

  73. J. Krzanowski and F. M. Matchinsky, Regulation of phosphofructokinase by phosphocreatine and phosphorylated glycolytic intermediates, Biochem. Biophys. Res. Commun. 34:816–823, 1969.

    Google Scholar 

  74. B. K. Siesjö and K. Messeter, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 244–262, Munksgaard, Copenhagen, 1971.

    Google Scholar 

  75. K. Y. Hostetler, B. R. Landau, R. J. White, M. S. Albin, and D. Yashon, Contribution of the pentose cycle to the metabolism of glucose in the isolated, perfused brain of the monkey, J. Neurochem. 17:33–39, 1970.

    Google Scholar 

  76. W. Sachs, Cerebral metabolism of doubly labelled glucose in humans in vivo, J. Appl. Physiol. 20:117–130, 1965.

    Google Scholar 

  77. J. J. O’Neill and T. E. Duffy, Alternate metabolic pathways in newborn brain, Life Sci. 5:1849–1857, 1966.

    Google Scholar 

  78. A. L. Lehninger, “Biochemistry—Molecular Basis of Cell Structure,” Worth Publishers, New York, 1970.

    Google Scholar 

  79. B. Chance and G. R. Williams, The respiratory chain and oxidative phosphorylation, Advan. Enzymol. 17:65–134, 1956.

    Google Scholar 

  80. B. Chance, The interaction of energy and electron transfer reactions in mitochondria, J. Biol. Chem. 236:1544–1554, 1961.

    Google Scholar 

  81. M. Klingenberg and P. Schollmeyer, On the relation between the activation of succinate oxidation and the activation of DPN reduction in mitochondria, Biochem. Biophys. Res. Commun. 4:38–41, 1961.

    Google Scholar 

  82. N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the level of citric acid cycle intermediates, J. Biol. Chem. 211:3997–4003, 1966.

    Google Scholar 

  83. C. J. van den Berg, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 355–379, Plenum Press, New York, 1970.

    Google Scholar 

  84. C. F. Baxter, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 289–353, Plenum Press, New York, 1970.

    Google Scholar 

  85. R. W. Albers and G. J. Koval, Succinic semialdehyde dehydrogenase: Purification and properties of the enzyme from monkey brain, Biochim. Biophys. Acta 52:29–35, 1961.

    Google Scholar 

  86. F. N. Pitts, Jr., and C. Quick, Brain succinate semialdehyde dehydrogenase. I. Assay and distribution, J. Neurochem. 12:893–900, 1965.

    Google Scholar 

  87. E. Roberts, in“Progress in Neurology. I. Neurochemistry” (S. R. Korey and J. I. Nurnburger, eds.), pp. 11–25, Hoeber-Harper, New York, 1956.

    Google Scholar 

  88. G. M. McKhann, R. W. Albers, L. Sokoloff, O. Mickelsen, and D. B. Tower, in“Inhibition in the Nervous System and γ-Amino-butyric Acid” (E. Roberts, ed.), pp. 169–181, Pergamon Press, Oxford, 1960.

    Google Scholar 

  89. R. Balázs, K. Magyar, and D. Richter, in“Comparative Neurochemistry” (D. Richter, ed.), pp. 225–248, Pergamon Press, Oxford, 1964.

    Google Scholar 

  90. R. Balázs, Y. Machiyama, and D. Richter, in“First International Meeting of the International Society for Neurochemistry,” p. 13, Strasbourg, 1967.

    Google Scholar 

  91. D. R. Curtis and G. A. R. Johnston, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 4, pp. 115–134, Plenum Press, New York, 1970.

    Google Scholar 

  92. S. Berl, G. Takagaki, D. D. Clarke, and H. Waelsch, Carbon dioxide fixation in the brain, J. Biol. Chem. 237:2570–2573, 1962.

    Google Scholar 

  93. H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2fixation in mammalian brain in vivo, J. Neurochem. 11:717–728, 1964.

    Google Scholar 

  94. L. Salganicoff and R. E. Koeppe, Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain, J. Biol. Chem. 243:3416–3420, 1968.

    Google Scholar 

  95. S. Berl, S.-C. Cheng, and H. Waelsch, in“Comparative Neurochemistry” (D. Richter, ed.), pp. 207–212, Pergamon Press, Oxford, 1964.

    Google Scholar 

  96. F. A. Finnerty, Jr., L. Witkin, and J. F. Fazekas, Cerebral hemodynamics during ischemia induced by acute hypotension, J. Clin. Invest. 33:1227–1232, 1954.

    Google Scholar 

  97. S. A. Kuby and E. A. Noltman, in“The Enzymes” (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 6, pp. 515–596, Academic Press, New York, 1962.

    Google Scholar 

  98. I. A. Rose, The state of magnesium in cells as estimated from the adenylate kinase equilibrium, Proc. Natl. Acad. Sci. 80:235–248, 1968.

    Google Scholar 

  99. K. Messeter and B. K. Siesjö, The intracellular pHin the brain in acute and sustained hypercapnia, Acta Physiol. Scand 83:210–219, 1971.

    Google Scholar 

  100. D. E. Atkinson, Biological feedback control at the molecular level, Science 150:851–857, 1965.

    Google Scholar 

  101. D. E. Atkinson, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7:4030–4034, 1968.

    Google Scholar 

  102. F. N. Minard and R. V. Davis, The effects of electroshock on the acid-soluble phosphates of rat brain, J. Biol. Chem. 237:1283–1289, 1962.

    Google Scholar 

  103. H. S. Maker and G. M. Lehrer, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 4, pp. 267–310, Plenum Press, New York, 1970.

    Google Scholar 

  104. W. Thorn, H. Scholl, G. Pfleiderer, and B. Muldener, Stoffwechselvorgänge im Gehirn bei normaler und herabgesetzter Körpertemperature unter ischämischer und anoxischer Belastung, J. Neurochem. 2:150–165, 1958.

    Google Scholar 

  105. H. J. Hohorst, F. H. Kreutz, and T. Bücher, Über Metabolitgehalte und Metabolitkonzentrationen in der Leber der Ratte, Biochem. Z. 332:18–46, 1959.

    Google Scholar 

  106. F. W. Schmahl, E. Betz, H. Talke, and H. J. Hohorst, Energiereiche Phosphate und Metabolite des Energiestoffwechsels in der Grosshirnrinde der Katze, Biochem. Z. 432:518–531, 1965.

    Google Scholar 

  107. P. D. Gatfield, O. H. Lowry, D. W. Schulz, and J. V. Passonneau, Regional energy reserves in the mouse brain and changes with ischaemia and anaesthesia, J. Neurochem. 13:185–195, 1966.

    Google Scholar 

  108. J. Folbergrová, J. V. Passonneau, O. H. Lowry, and D. W. Schulz, Glycogen, ammonia and related metabolites in the brain during seizures evoked by methionine sulphoximine, J. Neurochem. 16:191–203, 1969.

    Google Scholar 

  109. J. Folbergrová, O. H. Lowry, and J. V. Passonneau, Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anaesthesia, J. Neurochem. 17:1155–1162, 1970.

    Google Scholar 

  110. D. C. Howse and T. E. Duffy, Biochemical and EEG effect of ischemia on the young gerbil brain, in preparation, 1972.

    Google Scholar 

  111. S. E. Kerr, Studies on the phosphorus compounds of brain. I. Phosphocreatine, J. Biol. Chem. 110:625–635, 1935.

    Google Scholar 

  112. D. Richter and R. M. C. Dawson, Brain metabolism in emotional excitement, Am. J. Physiol. 154:73–79, 1948.

    Google Scholar 

  113. U. Pontén, Acid-base changes in rat brain tissue during acute respiratory acidosis and baseosis, Acta Physiol. Scand. 68:152–163, 1966.

    Google Scholar 

  114. B. K. Siesjö and N. N. Zwetnow, Effects of increased cerebrospinal fluid pressure upon adenine nucleotides and upon lactate and pyruvate in rat brain tissue, Acta Neurol. Scand. 46:187–202, 1970.

    Google Scholar 

  115. L. Nilsson and B. K. Siesjö, The effect of anesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain, Acta Physiol. Scand. 80:235–248, 1970.

    Google Scholar 

  116. J. Barcroft, “Features in the Architecture of Physiologic Function,” Cambridge University Press, London, 1934.

    Google Scholar 

  117. W. S. Root, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. Rahn, eds.), Vol. 2, pp. 1087–1098, American Physiological Society, Washington, D.C., 1965.

    Google Scholar 

  118. W. Noell, Über die Durchblutung und die Sauerstoffversorgung des Gehirns. VI. Mitteilung. Einfluss der Hypoxemic und Anämie, Pflügers Arch. Ges. Physiol. 247:553–575, 1944.

    Google Scholar 

  119. E. S. Gurdjian, W. E. Stone, and J. E. Webster, Cerebral metabolism in hypoxia, Arch. Neurol. 51:472–477, 1944.

    Google Scholar 

  120. D. G. McDowall, in“A Symposium on Oxygen Measurements in Blood and Tissues and Their Significance” (J. P. Payne and D. W. Hill, eds.), pp. 205–219, J. &. A. Churchill, Ltd., London, 1966.

    Google Scholar 

  121. K. Kogure, P. Scheinberg, O. M. Reinmuth, M. Fujishima, and R. Busto, Mechanisms of cerebral vasodilatation in hypoxia, J. Appl. Physiol. 29:223–229, 1970.

    Google Scholar 

  122. H. A. Kontos, J. E. Levasseur, D. W. Richardson, H. P. Manck, and J. L. Patterson, Comparative circulatory responses to systemic hypoxia in man and unanesthetized dog, J. Appl. Physiol. 23:381–386, 1967.

    Google Scholar 

  123. J. Scheuer, Myocardial metabolism in cardiac hypoxia, Am. J. Cardiol. 19:385–392, 1967.

    Google Scholar 

  124. C. E. Cross, A. Rieben, C. I. Barron, and P. F. Salisbury, Effects of arterial hypoxia on the heart and circulation: An integrative study, Am. J. Physiol. 205:963–970, 1963.

    Google Scholar 

  125. S. E. Downing, N. S. Talner, and T. H. Gardner, Influence of hypoxemia and acidemia on left ventricular function, Am. J. Physiol. 210:1327–1334, 1966.

    Google Scholar 

  126. S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin. Invest. 27: 476–483, 1948.

    Google Scholar 

  127. W. M. Landau, W. H. Freygang, L. P. Rosland, L. Sokoloff, and S. S. Kety, The local circulation of the living brain; values in the unanesthetized and anesthetized cat, Trans. Am. Neurol. Ass. 80:125–129, 1955.

    Google Scholar 

  128. M. Reivich, J. Jehle, L. Sokoloff, and S. S. Kety, Measurement of regional cerebral blood flow with antipyrine-14C in awake cats, J. Appl. Physiol. 27:296, 1969.

    Google Scholar 

  129. S. S. Kety, in“Handbook of Physiology—Neurophysiology” (J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. 3, pp. 1751–1760, American Physiological Society, Washington, D. C., 1960.

    Google Scholar 

  130. L. Sokoloff, The action of drugs on cerebral circulation, Pharmacol. Rev. 11:1–85, 1959.

    Google Scholar 

  131. C. E. Rapela and H. D. Green, Autoregulation of canine cerebral blood flow, Circ. Res. 15:205–211, 1964, Suppl. I.

    Google Scholar 

  132. E. Häggendal and B. Johansson, Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs, Acta Physiol. Seand. 66:27–53, 1965. Suppl. 258.

    Google Scholar 

  133. A. M. Harper, Autoregulation of cerebral blood flow: Influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat. 29:398–403, 1966.

    Google Scholar 

  134. J. Freeman and D. H. Ingvar, Elimination by hypoxia of cerebral blood flow autoregulation and EEG relationship, Exptl. Brain Res. 5:61–71, 1968.

    Google Scholar 

  135. F. Plum, J. B. Posner, and B. Troy, Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch. Neurol. 18:1–13, 1968.

    Google Scholar 

  136. M. Reivich, W. J. S. Marshall, and N. Kassell, Effects of trauma upon cerebral vascular autoregulation, in“Proceedings of the Seventh Princeton Conference on Cerebral Vascular Disorders,” Grune & Stratton, New York, 1971.

    Google Scholar 

  137. S. S. Kety and C. F. Schmidt, The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men, J. Clin. Invest. 27:484–492, 1948.

    Google Scholar 

  138. S. C. Alexander, P. J. Cohen, H. Wollman, T. C. Smith, M. Reivich, and R. A. van der Molen, Cerebral carbohydrate metabolism during hypocarbia in man, Anesthesiology 26:624–632, 1965.

    Google Scholar 

  139. S. C. Alexander, T. C. Smith, G. Strobel, G. W. Stephen, and H. Wollman, Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis, J. Appl. Physiol. 24:66–72, 1968.

    Google Scholar 

  140. L. Granholm and B. K. Siesjö, The effect of combined respiratory and nonrespiratory alkalosis on energy metabolites and acid-base parameters in the rat brain, Acta Physiol. Scand. 81:307–314, 1971.

    Google Scholar 

  141. E. Sveinsdottir, P. Thorlof, J. Risberg, D. H. Ingvar, and N. A. Lassen, Regional cerebral blood flow in man, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.

    Google Scholar 

  142. U. C. Luft, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. Rahn, eds.), Vol. 2, pp. 1099–1145, American Physiological Society, Washington, D. C., 1965.

    Google Scholar 

  143. B. Chance and B. Schoener, Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electroencephalogram of the rat in anoxia, Nature 195:956–958, 1962.

    Google Scholar 

  144. W. Thorn, G. Pfleiderer, R. A. Frowein, and J. Ross, Stoftwächselvorgänge im Gehirn bei akuter Anoxie, akuter Ischämie und in der Erholung, Pflügers Arch. Ges. Physiol. 261:334–360, 1955.

    Google Scholar 

  145. U. Müller, W. Isselhard, D. H. Hinzen, and E. Geppert, Elektrocortigramm und regionaler Energiestoffwechsel des Kaninchengehirns in der postischämischen Erholung, Pflugers Arch. Ges. Physiol. 320:181–194, 1970.

    Google Scholar 

  146. P. J. Cohen, S. C. Alexander, T. C. Smith, M. Reivich, and H. Wollman, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23:183–189, 1967.

    Google Scholar 

  147. S. Shimojyo, P. Scheinberg, K. Kogure, and O. M. Reinmuth, The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption, Neurology 18:127–133, 1968.

    Google Scholar 

  148. A. G. Swanson, L. S. Stavney, and F. Plum, Effects of blood pH and carbon dioxide on cerebral electrical activity, Neurology 8:787–792, 1958.

    Google Scholar 

  149. B. K. Siesjö and L. Nilsson, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain, Scand. J. Clin. Lab. Invest. 27:83–96, 1971.

    Google Scholar 

  150. V. MacMillan and B. K. Siesjo, Critical oxygen tensions in the brain, Acta Physiol. Scand. 82:412–414, 1971.

    Google Scholar 

  151. V. MacMillan and B. K. Siesjö, Cerebral energy metabolism in hypoxemia, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972

    Google Scholar 

  152. B. Hindfelt and B. K. Siesjö, Cerebral effects of acute ammonia intoxication. I. The influence on intracellular and extracellular acid-base parameters, Scand. J. Clin. Lab. Invest. 28:353–364, 1971.

    Google Scholar 

  153. L. G. Salford, J. B. Brierley, F. Plum, and B. K. Siesjö, Energy metabolism and histology in the brain during combined hypoxemia and ischemia, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.

    Google Scholar 

  154. R. L. Friede and W. H. van Houten, Relations between post morten alterations and glycolytic metabolism in the brain, Exptl. Neurol. 4:197–204, 1961.

    Google Scholar 

  155. R. Lindenberg, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 189–209, Blackwell Scientific Publications, Oxford, 1963.

    Google Scholar 

  156. J. K. Thews, S. H. Carter, P. D. Roa, and W. E. Stone, Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by Picrotoxin and by phenylene tetrazol, J. Neurochem. 10:641–653, 1963.

    Google Scholar 

  157. R. L. Young and O. H. Lowry, Quantitative methods for measuring the histochemical distribution of alanine, glutamate and glutamine in brain, J. Neurochem. 13:785–793, 1966.

    Google Scholar 

  158. R. A. Lowell, S. J. and K. A. C. Elliott, The γ-aminobutyric acid and factor I content of brain, J. Neurochem. 10:479–488, 1963.

    Google Scholar 

  159. W. Thorn and J. Heimann, Beeinfluenssung der Ammoniak-konzentration in Gehirn, Herz, Leber, Niere und Muskulatur durch Ischämie, Anoxie, Asphyxie und Hypothermie, J. Neurochem. 2:166–177, 1958.

    Google Scholar 

  160. U. Müller, W. Isselhard, D. H. Hinzen, and E. Geppert, Regionaler Energiestoffwechsel im Kaninchengehirn während kompletter Ischämie in Normothermie, Pflügers Arch. Ges. Physiol. 320:168–180, 1970.

    Google Scholar 

  161. B. Eklöf, V. MacMillan, and B. K. Siesjö, The effect of ischemia upon the energy state of the brain, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Kar, Basel, 1972.

    Google Scholar 

  162. O. Sugar and R. Gerard, Anoxia and brain potentials, J. Neurophysiol. 1:558–572, 1938.

    Google Scholar 

  163. L. M. Weinberger, M. H. Gibbon, and J. H. Gibbon, Temporary arrest of the circulation to the central nervous system, Arch. Neurol. Psychiat. 43:961–986, 1940.

    Google Scholar 

  164. H. Gänshirt, L. Dransfeld, and W. Zylka, Das Hirnpotentialbild und der Erholungsrückstand am Warmblütergehirn nach kompletter Ischämie, Arch. Psychiat. Nervenkr. 189:109–125, 1952.

    Google Scholar 

  165. C. Heymans, J. J. Bouckaert, F. Jordan, S. J. G. Nowak, and S. Farber, Survival and revival of nerve centers following acute anemia, Arch. Neurol. Psychiat. 38:304–307, 1937.

    Google Scholar 

  166. H. E. Himwich and J. F. Fazekas, Comparative studies of the metabolism of the brain of infant and adult dogs, Am. J. Physiol. 132:454–459, 1941.

    Google Scholar 

  167. H. E. Himwich, P. Sykowski, and J. F. Fazekas, A comparative study of excised cerebral tissues of adult and infant rats, Am. J. Physiol. 132:293–296, 1941.

    Google Scholar 

  168. W. J. Waddell and T. C. Butler, Calculation of intracellular pH from the distribution of 5.5-dimethyl-2.4-oxazolidinedione (DMO). Application to skeletal muscle of the dog, J. Clin. Invest. 38:720–729, 1959.

    Google Scholar 

  169. W. Thorn and R. Heitmann, pH der Gehirnrinde vom Kaninchen in situwährend perakuter, totaler Ischämie, reiner Anoxie und in der Erholung, Pflügers Arch. Ges. Physiol. 258:510–510, 1954.

    Google Scholar 

  170. J. W. Crowell and B. N. Kaufmann, Changes in tissue pH after circulatory arrest, Am. J. Physiol. 200:743–745, 1961.

    Google Scholar 

  171. V. MacMillan and B. K. Siesjö, Intracellular pH of the brain in hypoxemia, evaluated with the CO2method and from the creatine Phosphokinase equilibrium, Scand. J. Clin. Lab. & Invest., in press.

    Google Scholar 

  172. D. B. McDougal, Jr., J. Holowach, M. C. Howe, E. M. Jones, and C. A. Thomas, The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog and turtle, J. Neurochem. 15:577–588, 1968.

    Google Scholar 

  173. H. Hirsch, K. H. Euler, and M. Schneider, Über die Erholung und Wiederbelebung des Gehirns nach Ischämie bei Normothermie, Pflügers Arch. Ges. Physiol. 265:281–313, 1957.

    Google Scholar 

  174. M. Schneider, in“Cerebral Anoxia and the Electroencephalogram” (H. Gastaut and J. S. Meyer, eds.), Chap. 13, C. C. Thomas, Springfield, Ill., 1961.

    Google Scholar 

  175. H. Hirsch, A. Bolte, A. Schaudig, and D. Tönnis, Uber die Wiederbelebung des Gehirns bei Hypothermie, Pflügers Arch. Ges. Physiol. 265:328–336, 1957.

    Google Scholar 

  176. A. Ames, III, and B. S. Gurian, Effects of glucose and oxygen deprivation on function of isolated mammalian retina, J. Neurophysiol. 26:617–634, 1963.

    Google Scholar 

  177. W. A. Neely and J. R. Youmans, Anoxia of canine brain without damage, J. A.M.A. 183:1085–1087, 1963.

    Google Scholar 

  178. W. Kramer and J. A. Tuynman, Acute intracranial hypertension—an experimental investigation, Brain Res. 6:686–705, 1967.

    Google Scholar 

  179. M. Kowada, A. Ames, III, G. Majno, and R. L. Wright, Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit, J. Neurosurg. 28:150–157, 1968.

    Google Scholar 

  180. A. Ames, III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, Cerebral ischemia. II. The no-reflow phenomenon, Am. J. Pathol. 52:437–454, 1968.

    Google Scholar 

  181. J. Chiang, M. Kowada, A. Ames, III, R. L. Wright, and G. Majno, Cerebral ischemia. III. Vascular changes, Am. J. Pathol. 52:455–476, 1968.

    Google Scholar 

  182. R. C. Cantu and A. Ames, III, Experimental prevention of cerebral vasculature obstruction produced by ischemia, J. Neurosurg. 30:50–54, 1969.

    Google Scholar 

  183. K.-A. Hossmann and Y. Olsson, Suppression and recovery of neuronal function in transient cerebral ischemia, Brain Res. 22:313–325, 1970.

    Google Scholar 

  184. B. K. Siesjö and N. N. Zwetnow, The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain, Acta Physiol. Scand. 79:114–124, 1970.

    Google Scholar 

  185. B. Eklöf and B. K. Siesjö, Cerebral blood flow and cerebral energy state, Acta Physiol. Scand. 82:409–411, 1971.

    Google Scholar 

  186. B. K. Siesjö, Metabolism and flow in the hypoxic brain, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.

    Google Scholar 

  187. R. Lindenberg, The pathology of the arterial border zones of the brain, J. Neuropathol. Exptl. Neurol. 18:348–349, 1959.

    Google Scholar 

  188. F. Romanul and A. Abramowicz, Changes in brain and pial vessels in arterial border zones, Arch. Neurol. 11:40–65, 1964.

    Google Scholar 

  189. J. B. Brierley, A. W. Brown, B. J. Excell, and B. S. Meldrum, Brain damage in the rhesus monkey resulting from profound arterial hypotension. I. Its nature, distribution and general physiological correlates, Brain Res. 13:68–100, 1969.

    Google Scholar 

  190. H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” Williams & Wilkins Co., Baltimore, 1951.

    Google Scholar 

  191. J. H. Thurston and D. B. McDougal, Jr., Effect of ischemia on metabolism of the brain of the newborn mouse, Am. J. Physiol. 216:348–352, 1969.

    Google Scholar 

  192. C. I. Mayman and M. L. Tijerina, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 243–249, William Heinemann Medical Books, Ltd., London, 1971.

    Google Scholar 

  193. S. W. Britton and R. F. Kline, Age, sex, carbohydrate, adrenal cortex and other factors in anoxia, Am. J. Physiol. 145:190–202, 1945–1946.

    Google Scholar 

  194. E. A. Bering, Effect of body temperature change on cerebral oxygen consumption of the intact monkey, Am. J. Physiol. 200:417–419, 1961.

    Google Scholar 

  195. P. J. Cohen, H. Wollman, S. C. Alexander, P. E. Chase, and M. G. Behar, Cerebral carbohydrate metabolism in man during halothane anesthesia, Anesthesiology 25:18–5191, 1964.

    Google Scholar 

  196. O. Secher and B. Wilhjelm, The protective action of anesthetics against hypoxia, Scand. Anaesth. Soc. J. 15:423–440, 1968.

    Google Scholar 

  197. L. Nilsson and B. K. Siesjö, The effect of deep halothane hypotension upon labile phosphates and upon extra- and intracellular lactate and pyruvate concentrations in the rat brain, Acta Physiol. Scand. 81:508–516, 1971.

    Google Scholar 

  198. L. Nilsson, The influence of barbiturate anaesthesia upon the energy state and upon acid-base parameters of the brain in arterial hypotension and in asphyxia, Acta Neurol. Scand. 47:233–253, 1971.

    Google Scholar 

  199. B. K. Siesjö, L. Nilsson, M. Rokeach, and N. N. Zwetnow, Energy metabolism of the brain at reduced cerebral perfusion pressures and in arterial hypoxaemia, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 49–60, William Heinemann Medical Books Ltd., London, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Siesjö, B.K., Plum, F. (1973). Pathophysiology of Anoxic Brain Damage. In: Gaull, G.E. (eds) Biology of Brain Dysfunction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2667-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2667-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2669-4

  • Online ISBN: 978-1-4684-2667-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics