Skip to main content

Disorders of Cerebrospinal Fluid and Brain Extracellular Fluid

  • Chapter

Abstract

The chemical composition of the extracellular fluid (ECF) of the brain is similar to that of cerebrospinal fluid (CSF). Brain ECF is inaccessible for studies in humans, and serial determinations are difficult in animals. On the other hand, CSF can be sampled serially, in vivo, without altering physical or chemical parameters. Therefore, the CSF’s dynamic alterations are used to define dysfunction within the CSF compartment, as a direct index of dysfunction of brain ECF, and as an indirect index of cerebrocellular metabolism and dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Archer-Hind, “The Timaeus of Plato,” p. 273, Macmillan Co., London, 1888.

    Google Scholar 

  2. E. Clarke, The early history of the cerebral ventricles, Trans. Stud. Coll. Phys. Phila. 30:85–89, 1963.

    Google Scholar 

  3. C. Singer, “Vesalius on the Human Brain” (C. Singer, ed.), p. 18, Oxford University Press, London, 1952.

    Google Scholar 

  4. L. C. McHenry, Jr., “Garrison’s History of Neurology,” p. 71, C. C. Thomas, Springfield, Ill., 1969.

    Google Scholar 

  5. H. Davson, “Physiology of the Cerebrospinal Fluid,” Williams & Wilkins Co., Baltimore, 1967.

    Google Scholar 

  6. H. Davson, “A Textbook of General Physiology,” pp. 714–750, Williams & Wilkins Co., Baltimore, 1970.

    Google Scholar 

  7. H. Cserr, Physiology of the choroid plexus, Physiol. Rev. 51:273–311, 1971.

    Google Scholar 

  8. T. H. Milhorat, M. K. Hammock, J. D. Fenstermacher, D. P. Rall, and V. A. Levin, Cerebrospinal fluid production by the choroid plexus and brain, Science 173:330–332, 1971.

    Google Scholar 

  9. K. Welch and V. Friedman, The cerebrospinal fluid valves, Brain 83:454–469, 1960.

    Google Scholar 

  10. L. H. Weed, The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi,J. Med. Res. 31:51–91, 1914.

    Google Scholar 

  11. H. Davson, G. Hollingsworth, and M. B. Segal, The mechanism of drainage of the cerebrospinal fluid, Brain 93:665–678, 1970.

    Google Scholar 

  12. L. D. Prockop and L. S. Schanker, On the mode of exit of substances from cerebrospinal fluid, Life Sci. 1:141–149, 1962.

    Google Scholar 

  13. A. Shabo and D. Maxwell, The morphology of the arachnoid villi: A light and electron microscopic study in the monkey,J. Neurosurg. 29:451–463, 1968.

    Google Scholar 

  14. P. Ehrlich, “Das Sauerstoff-Bedürfnis des Organismus: Farbenanalytische Studie,” Hirschwald, Berlin, 1885.

    Google Scholar 

  15. L. Bakay and J. C. Lee, “Cerebral Edema,” C. C. Thomas, Springfield, Ill., 1965.

    Google Scholar 

  16. C. F. Barlow, Clinical aspects of the blood-brain barrier, Ann. Rev. Med. 15:187–202, 1964.

    Google Scholar 

  17. J. Dobbing, The development of the blood-brain barrier, in “Brain Barrier System” (A. Lajtha and D. H. Ford, eds.), pp. 417–427, Elsevier, New York, 1968.

    Google Scholar 

  18. R. Edstrom, Recent developments of the blood-brain barrier concept, Internat. Rev. Neurobiol. 7:153–190, 1964.

    Google Scholar 

  19. I. Klatzo and F. Seitelberger, “Brain Edema,” Springer-Verlag, New York, 1967.

    Google Scholar 

  20. J. Dobbing, The blood-brain barrier, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.), Vols. 4 and 5 of “Contemporary Neurology Series,” F. A. Davis Co., Philadelphia, 1968.

    Google Scholar 

  21. J. C. Lee, Evolution in the concept of the blood-brain barrier phenomenon, in “Progress in Neuropathology” (A. M. Zimmerman, ed.), pp. 84–145, Gruen & Stratton, New York, 1971.

    Google Scholar 

  22. C. Crone, Facilitated transfer of glucose from blood into brain tissue,J. Physiol. 181:103–113, 1965.

    Google Scholar 

  23. R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206:836–844, 1964.

    Google Scholar 

  24. W. O. Whetsell, Jr., and I. Lockard, Responses to intracarotid Hypaque in rabbits with and without low molecular weight dextran,J. Neuropathol. Exptl. Neurol. 25:283–295, 1966.

    Google Scholar 

  25. E. J. Laskowski, I. Klatzo, and M. Baldwin, Experimental study of the effects of hypothermia on local brain injury, Neurology 10:499–505, 1960.

    Google Scholar 

  26. M. Y. Maizelis, Permeability of tissue-blood barriers during changes in functional state of central nervous system. Fed. Proc. Trans. Suppl. 25–969–971, 1966.

    Google Scholar 

  27. R. B. Aird and R. A. Becker, The blood-brain barrier in clinical disease. A review,J. Nerv. Dis. 136:517–526, 1963.

    Google Scholar 

  28. T. Broman, On basic aspects of the blood-brain barrier, Acta Psychiat. Neurol. Scand. 30:115–124, 1955.

    Google Scholar 

  29. W. Haymaker, Effects of ionizing radiation on nervous tissue, in “The Structure and Function of Nervous Tissue” (G. H. Bourne, ed.), Vol. 3 of “Biochemistry and Disease,” pp. 441–518, Academic Press, New York, 1969.

    Google Scholar 

  30. R. A. Fishman, Cerebrospinal fluid, in “Clinical Neurology” (A. B. Baker, ed.), Vol. 1, Chap. 5, pp. 350–388, Hoeber-Harper, New York, 1962.

    Google Scholar 

  31. M. Cole, Examination of the cerebrospinal fluid, in “Special Techniques for Neurologic Diagnosis” (J. F. Toole, ed.), Vol. 3 of “Contemporary Neurology Series,” pp. 29–47, F. A. Davis Co., Philadelphia, 1969.

    Google Scholar 

  32. W. H. McMenemy, The significance of subarachnoid bleeding, Proc. Roy. Soc. Med. 47:701–704, 1954.

    Google Scholar 

  33. W. W. Tourtellotte, K. C. Quan, A. F. Haerer, and E. R. Bryan, Neoplastic cells in the cerebrospinal fluid, Neurology 13:866–868, 1963.

    Google Scholar 

  34. K. G. Kjellin, The binding of xanthochromic compounds in the cerebrospinal fluid,J. Neurol Sci. 9:597–601, 1969.

    Google Scholar 

  35. K. G. Kjellin, Bilirubin compounds in the CSF,J. Neurol. Sci. 13:161–173, 1971.

    Google Scholar 

  36. R. M. N. Crosby and G. L. Weiland, Xanthochromia of the cerebrospinal fluid, Arch. Neurol. Psychiat. 69:732–736, 1953.

    Google Scholar 

  37. V. Marks and D. Marrack, Tumor cells of the cerebrospinal fluid,J. Neurol. Neurosurg. Psychiat. 23:194–201, 1960.

    Google Scholar 

  38. W. F. McCormick and S. A. Coleman, A membrane filter technic for cytology of spinal fluid, Am. J. Clin. Pathol. 38:191–197, 1962.

    Google Scholar 

  39. J. R. Rich, A survey of cerebrospinal fluid cytology, Bull. Los Angeles Neurol. Soc. 34: 115:131, 1969.

    Google Scholar 

  40. J. M. Bennett, J. Ruberg, and S. Dixon, A semi-automated method for the concentration of cerebrospinal fluid for cytologic examination, Am. J. Clin. Pathol. 50:533–536, 1968.

    Google Scholar 

  41. O. Kolar and W. Zeman, Spinal fluid cytomorphology, Arch. Neurol. 18:44–51, 1968.

    Google Scholar 

  42. G. Simon and H. Schröer, The cell-catch procedure. A new method which preserves all cellular elements of spinal fluid samples,J. Neurosurg. 20:787–792, 1963.

    Google Scholar 

  43. F. Pariante and A. Scala, Cytology and cytochemistry of the cerebrospinal fluid, II Pensiero Sci. (Roma) 1–132, 1969.

    Google Scholar 

  44. H. H. Merritt and F. Fremont-Smith, “The Cerebrospinal Fluid,” Saunders, Philadelphia, 1937.

    Google Scholar 

  45. O. Gilland, Normal cerebrospinal-fluid pressure, New Engl. J. Med. 280–904–905, 1969.

    Google Scholar 

  46. W. E. Stern, Intracranial fluid dynamics. The relationship of intracranial pressure to the Monro-Kellie doctrine and the reliability of pressure assessment,J. Roy. Coll. Surg. Edinburgh 9:18–36, 1963.

    Google Scholar 

  47. G. Kellie, An account of the appearances observed in the dissection of two of three individuals presumed to have perished in the storm of 3d, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th, November, 1821; with some reflections on the pathology of the brain, Trans. Med. Chir. Soc. Edinburgh 1:84–169, 1824.

    Google Scholar 

  48. A. Monro, “Observations on the Structures and Function of the Nervous System,” Creech, Edinburgh, 1783.

    Google Scholar 

  49. L. Weed, Some limitations of the Monro-Kellie hypothesis, Arch. Surg. 18:1049–1068, 1929.

    Google Scholar 

  50. T. W. Langfitt, increased intracranial pressure, Clin. Neurosurg. 16:436–471, 1969.

    Google Scholar 

  51. L. D. Prockop, Drugs for reducing increased intracranial pressure, Med. Letter 12:47–48, 1970.

    Google Scholar 

  52. H. Hooshmand, J. Dove, S. Houff, and C. Suter, Effects of diuretics and steroids on CSF pressure, Arch. Neurol. 21:499–509, 1969.

    Google Scholar 

  53. S. Hakim and R. Adams, The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure,J. Neurol. Sci. 2:307–327, 1965.

    Google Scholar 

  54. R. Ojemann, C. Fisher, R. Adams, W. Sweet, and P. New, Further experience with the syndrome of “normal” pressure hydrocephalus,J. Neurosurg. 31:279–294, 1969.

    Google Scholar 

  55. F. Benson, M. LeMay, D. Patten, and A. Rubens, Diagnosis of normal-pressure hydrocephalus, New Engl. J. Med. 283:609–615, 1970.

    Google Scholar 

  56. H. E. Schultze and J. F. Heremans, The proteins of cerebrospinal fluid, in “Molecular Biology of Human Proteins,” Vol. 1, Sect, 4. Chap. 3, pp. 732–761, Elsevier, New York, 1966.

    Google Scholar 

  57. L. J. Lemmen, N. A. Newman, and R. N. DeJong, Study of cerebrospinal fluid proteins with paper electrophoresis 1. A review of literature, Univ. Mich. Med. Bull. 23:3–32, 1957.

    Google Scholar 

  58. E. A. Kabat, D. H. Moore, and H. Landow, An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum protein,J. Clin. Invest. 21:571–577, 1942.

    Google Scholar 

  59. R. A. Fishman, J. Ransohoff, and E. F. Osserman, Factors influencing the concentration gradient of protein in cerebrospinal fluid,J. Clin. Invest. 37:1419–1424.

    Google Scholar 

  60. J. Clausen, T. Fog, and E. R. Einstein, The clinical value of assaying proteins in the cerebrospinal fluid, Acta Neurol. Scand. 45:513–528, 1969.

    Google Scholar 

  61. H. Link, Immunoglobulin-G and low molecular weight proteins in human cerebrospinal fluid. Chemical and immunological characterizations with special reference to multiple sclerosis, Acta Neurol. Scand. 43: Suppl. 28, 1–136, 1967.

    Google Scholar 

  62. B. T. Naidoo, The cerebrospinal fluid in the healthy newborn infant, S. Afr. Med. J. 42:933–935, 1968.

    Google Scholar 

  63. H. Ito and S. Muira, Nervous system diseases and proteins in the blood and cerebrospinal fluid, Saishin Igaku 23:1651–1661, 1968.

    Google Scholar 

  64. C. E. Lunsden, The clinical pathology of multiple sclerosis, in “Multiple Sclerosis” (D. McAlpine, C. E. Lunsden, and E. D. Acheson, eds.), pp. 243–299. Williams & Wilkins Co., Baltimore, 1965.

    Google Scholar 

  65. H. Cohen, The magnesium content of the cerebrospinal and other body fluids, Quart. J. Med. 20:173–186, 1926.

    Google Scholar 

  66. S. Katzenelbogen, “The Cerebrospinal Fluid and Its Relation to the Blood,” Johns Hopkins Press, Baltimore, 1935.

    Google Scholar 

  67. B. Ursing, Clinical and immunoelectrophoretic studies on cerebrospinal fluid in virus meningoencephalitis and bacterial meningitis, Acta Med. Scand. 177: Suppl. 429, 1965.

    Google Scholar 

  68. L. P. Weiner, P. N. Anderson, and J. C. Allen, Cerebral plasmacytoma with myeloma protein in the cerebrospinal fluid, Neurology 16:615–618, 1966.

    Google Scholar 

  69. N. P. Goldstein, N. C. Hill, B. F. McKenzie, W. F. McGuckin, and H. J. Svien, Identification and quantification of proteins, glycoproteins, and lipoproteins of cerebrospinal fluid, Med. Clin. Am. 44:1053–1074, 1960.

    Google Scholar 

  70. R. R. Apostol, E. Roboz, W. C. Hess, and F. M. Forster, Changes in the glycoproteins of the cerebrospinal fluid in neurological diseases, Neurology 6:859–868, 1956.

    Google Scholar 

  71. E. Dallos, Z. Oberman, M. Herzberg, and M. Streifler, Cerebrospinal fluid glycoproteins in diseases of the central nervous system, Conf. Neurol. 29:20–32, 1967.

    Google Scholar 

  72. N. M. Linchenko, M. L. Promislov, and U. B. Makhmudov, Quantitative determination of glucoproteins in the CSF in differential diagnosis of brain gliomas, Zh. Nevropatol. Psikhiat. Korsakov 69:168–172, 1969.

    Google Scholar 

  73. J. C. Houck, H. J. McBride, and D. C. O’Doherty, The value of cerebrospinal fluid glycoprotein levels in the diagnosis of primary brain tumor, Neurology 18:397–402, 1968.

    Google Scholar 

  74. M. D. Yahr, S. S. Goldensohn, and E. A. Kabat, Further studies on the gamma globulin content of cerebrospinal fluid in multiple sclerosis and other neurological diseases, Ann. N. Y. Acad. Sci. 58:613–624, 1954.

    Google Scholar 

  75. A. Lowenthal, M. Van Sande, and D. Karcher, The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF γ globulins,J. Neurochem. 6:51–56, 1960.

    Google Scholar 

  76. R. R. Ivers, B. F. McKenzie, W. F. McGuckin, and N. P. Goldstein, Spinal-fluid gamma globulin in multiple sclerosis and other neurologic diseases, J.A.M.A. 176:515–519, 1961.

    Google Scholar 

  77. O. J. Kolar, A. T. Ross, and J. T. Herman, Serum and cerebrospinal fluid immunoglobulins in multiple sclerosis, Neurology 20:1052–1061, 1970.

    Google Scholar 

  78. W. W. Tourtellotte and J. A. Parker, Multiple sclerosis: Correlation between immuno-globulin-G in cerebrospinal fluid and brain, Science 154:1044–1046, 1966.

    Google Scholar 

  79. J. Clausen, T. Fog, and E. R. Einstein, The clinical value of assaying proteins in the cerebrospinal fluid, Acta Neurol. Scand. 45:513–528, 1969.

    Google Scholar 

  80. B. Gerstl, C. T. Uyeda, L. E. Eng, P. Bond, and J. K. Smith, Soluble proteins in normal and diseased human brains, Neurology 19:1019–1026, 1969.

    Google Scholar 

  81. S. A. Schneck and H. N. Claman, CSF immunoglobulins in multiple sclerosis and other neurological diseases, Arch. Neurol. 20:132–139, 1969.

    Google Scholar 

  82. U. Consbruch and H. Koufen, Der Beitrag der Liquorelektrophorese zur klinischen Diagnostik, Deutsch. Med. Wschr. 93:2168–2172, 1968.

    Google Scholar 

  83. N. I. Manno, W. F. McGuckin, and N. P. Goldstein, Cerebrospinal fluid total polysao scharide in diseases of the nervous system, Neurology 15:49–55, 1965.

    Google Scholar 

  84. M. Van Sande, Y. Mardens, K. Adriaenssens, and A. Lowenthal, The free amino acids in human cerebrospinal fluid,J. Neurochem. 17:125–135, 1970.

    Google Scholar 

  85. B. T. Hourani, E. M. Hamlin, and T. B. Reynolds, Cerebrospinal fluid glutamine as a measure of hepatic encephalopathy, Arch. Int. Med. 127:1033–1036, 1971.

    Google Scholar 

  86. J. J. Richter and A. Wainer, Evidence for separate systems for the transport of neutral and basic amino acids across the blood-brain barrier,J. Neurochem. 18:613–620, 1971.

    Google Scholar 

  87. D. H. Harter and R. G. Petersdorf, A consideration of the pathogenesis of bacterial meningitis: Review of experimental and clinical studies, Yale J. Biol. Med. 32:280–309, 1960.

    Google Scholar 

  88. B. T. Troost, J. E. Walder, and M. Cherington, Hypoglycorrhachia associated with subarachnoid hemorrhage, Arch. Neurol. 19:438–442, 1968.

    Google Scholar 

  89. L. Berg, Hypoglycorrhachia of non-infectious origin: Diffuse meningeal neoplasia, Neurology 3:811–824, 1953.

    Google Scholar 

  90. C. M. Wilfert, Mumps meningoencephalitis with low cerebrospinal fluid glucose, New Engl. J. Med. 280:855–859, 1969.

    Google Scholar 

  91. R. G. Petersdorf, D. M. Swarner, and M. Garcia, Studies on the pathogenesis of meningitis III. Relationship of phagocytosis to the fall in cerebrospinal fluid sugar in experimental pneumococcal meningitis,J. Lab. Clin. Med. 61:745–745, 1963.

    Google Scholar 

  92. J. E. Sifontes, R. D. B. Williams, E. M. Lincoln, and H. Clemons, Observations on the effect of induced hyperglycemia on the glucose content of the cerebrospinal fluid in patients with tuberculous meningitis, Am. Rev. Tuberc. 67:732–754, 1953.

    Google Scholar 

  93. R. A. Fishman, Studies of the transport of sugars between blood and cerebrospinal fluid in normal states and in meningeal carcinomatosis, Trans. Am. Neurol. Ass. 88:114–118, 1963.

    Google Scholar 

  94. L. D. Prockop and R. A. Fishman, Experimental pneumococcal meningitis. Permeability changes influencing the concentration of sugars and macromolecules in cerebrospinal fluid, Arch. Neurol. 19:449–463, 1968.

    Google Scholar 

  95. M. J. Madonick and N. Savitsky, Spinal fluid sugar in subarachnoid hemorrhage,J. Nerv. Ment. Dis. 108:45–53, 1948.

    Google Scholar 

  96. R. I. Feinbloom and J. J. Alpert, The value of routine glucose determination in spinal fluid without pleocytosis,J. Pediat. 75:121–123, 1969.

    Google Scholar 

  97. W. W. Tourtellotte, Study of lipids in cerebrospinal fluid. VI. The normal lipid profile, Neurology 9:375–383, 1959.

    Google Scholar 

  98. P. S. Sastry and H. C. Stancer, Quantitative analysis and fatty acid composition of phospholipid constituents in cerebrospinal fluid of various age groups, Clin. Chim. Acta 22:301–307, 1968.

    Google Scholar 

  99. W. W. Tourtellotte, R. N. DeJong, and W. H. van Houten, A study of lipids in the cerebrospinal fluid. I. The historical aspects, Univ. Mich. Med. Bull. 24:66–96, 1958.

    Google Scholar 

  100. W. W. Tourtellotte and A. F. Haerer, Lipids in cerebrospinal fluid, Arch. Neurol. 20:605–615, 1969.

    Google Scholar 

  101. K. J. Zilkah and B. McArdle, The phospholipid composition of cerebrospinal fluid in disease associated with demyelination, Quart. J. Med. 32:79–97, 1963.

    Google Scholar 

  102. J. K. Smith, B. Gerstl, W. E. Davis, and D. L. Orth, Lipoprotein patterns of spinal fluid obtained by paper electrophoresis, Arch. Neurol. Psychiat. 76:608–613, 1956.

    Google Scholar 

  103. M. Farstad, The determination of fatty acid in cerebrospinal fluid, Scand. J. Clin. Lab. Invest. 18:343–346, 1966.

    Google Scholar 

  104. A. Pazzagli, G. Arnetoli, I. Pepeu, and L. A. Amaducci, Fatty acid changes of cerebrospinal fluid in neurological disorders as an index of changes in the blood-brain barrier, Neurology 20:783–386, 1970.

    Google Scholar 

  105. F. C. Sitzmann, An investigation of enzymatic activities in the cerebrospinal fluid of children with encephalitis (non-bacterial), meningitis and hydrocephalus, Z. Kinderheilk. 106:76–88, 1969.

    Google Scholar 

  106. A. L. Sherwin, J. W. Norris, and J. A. Bulcke, Spinal fluid creatine kinase in neurological disease, Neurology 19:993–999, 1969.

    Google Scholar 

  107. M. J. Nathan, Creatine Phosphokinase in the cerebrospinal fluid,J. Neurol. Neurosurg. Psychiat. 30:52–55, 1967.

    Google Scholar 

  108. A. Culebras and N. E. Richards, Creatine Phosphokinase content in cerebrospinal fluid. Preliminary report of findings in multiple sclerosis, Cleveland Clin. Quart. 36:47–51, 1969.

    Google Scholar 

  109. M. Van Rymenant, J. Robert, and J. Otten, Isocitric dehydrogenase in the cerebrospinal fluid. Clinical usefulness of its determination, Neurology 16:351–354, 1966.

    Google Scholar 

  110. H. G. Thompson, Jr., E. Hirschberg, M. Osnos, and A. Gelhorn, Evaluation of phos-phohexose isomerase activity in cerebrospinal fluid in neoplastic disease of the central nervous system, Neurology 9:545–552, 1959.

    Google Scholar 

  111. R. D. B. Williams and R. Hawkins, The clinical value of cerebrospinal fluid lactic dehydrogenase determinations in children with bacterial meningitis and other neurological disorders, Develop. Med. Child. Neurol. 10:711–714, 1968.

    Google Scholar 

  112. F. Taccone, Cerebrospinal fluid transaminases in various neurological affections of the child, Pediatrica (Napoli) 76:892–904, 1968.

    Google Scholar 

  113. M. A. Belsey, CSF glutamic oxaloacetic transaminase in acute bacterial meningitis, Am. J. Dis. Child. 117:288–293, 1969.

    Google Scholar 

  114. M. Nakata, Glutamic oxaloacetic transaminase activity of cerebrospinal fluid in cerebrospinal disease with special reference to its diagnostic value in encephalitis, Jap. Shikoku Acta. Med. 24:588–602, 1968.

    Google Scholar 

  115. M. Spiegel-Adolf, H. Baird, and D. Kollias, Lipases in cerebrospinal fluid in various neurological conditions especially infantile amaurotic idiocy, Confin. Neurol. (Basel) 17:310–312, 1957.

    Google Scholar 

  116. P. J. Riekkinen and U. K. Rinne, Fractionation of peptidase and esterase activities of human cerebrospinal fluid, Brain Res. 9:136–144, 1968.

    Google Scholar 

  117. S. A. Georgieva, Cholinesterase activity of the cerebrospinal fluid in patients with sequelae of cerebro-cranial injuries, Vop. Neirokhir. 32:13–16, 1968.

    Google Scholar 

  118. N. S. Sharpless, A. D. Ericsson, and D. S. McCann, Clinical and cerebrospinal fluid changes in Parkinsonian patients treated with L-3,4-dehydroxyphenylalanine (l-DOPA), Neurology 21:540–549, 1971.

    Google Scholar 

  119. R. B. Godwin-Austen, B. D. Kantamaneni, and G. Curzon, Comparison of benefit from L-dopa in parkinsonism with increase of amine metabolites in the CSF,J. Neurol. Neurosurg. Psychiat. 34:219–223, 1971.

    Google Scholar 

  120. O. Gilland, Cerebrospinal fluid, in “Progress in Neurology and Psychiatry” (E. A. Spiegel, ed.), Vol. 25, Chap. 3, pp. 214–237, Grune & Stratton, New York, 1970.

    Google Scholar 

  121. C. G. Gottfries, I. Gottfries, and B. E. Roos, Homovanillicacid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and parkinsonism,J. Neurochem. 16:1341–1345, 1969.

    Google Scholar 

  122. J. A. Brody, T. N. Chase, and E. K. Gordon, Depressed monoamine catabolite levels in cerebrospinal fluid of patients with parkinsonism dementia of Guam, New Engl. J. Med. 282:947–950, 1970.

    Google Scholar 

  123. K. Pind and A. Faurbye, Concentration of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid after treatment with probenecid in patients with drug-induced tardive dyskinesia, Acta Psychiat. Scand. 46:323–326, 1970.

    Google Scholar 

  124. A. T. B. Moir, G. W. Ashcroft, T. B. B. Crawford, D. Eccleston, and H. C. Guldberg, Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain, Brain 93:357–368, 1970.

    Google Scholar 

  125. D. Eccleston, G. W. Ashcroft, A. T. B. Moir, A. Parker-Rhodes, W. Lutz, and D. P. O’Mahoney, A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid,J. Neurochem. 15:947–957, 1968.

    Google Scholar 

  126. H. C. Guldberg and C. M. Yates, Some studies of the effects of chlorpromazine, reserpine and dihydroxyphenylalanine on the concentrations of homovanillic acid, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindol-3-ylacetic acid in the ventricular cerebrospinal fluid of the dog using the technique of serial sampling of the cerebrospinal fluid, Brit. J. Pharmacol. 33:457–471, 1968.

    Google Scholar 

  127. S. Fahn, P. Barbour, and L. D. Prockop, Unpublished data.

    Google Scholar 

  128. G. W. Ashcroft, R. C. Dow, and A. T. B. Moir, The active transport of 5-hydroxyindol-3-ylacetic and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog,J. Physiol. 199:397–425, 1968.

    Google Scholar 

  129. D. M. Dawson and A. Taghavy, A test for spinal-fluid alcohol in torula meningitis, New Engl. J. Med. 269:1424–1425, 1963.

    Google Scholar 

  130. N. Vijayan, G. P. Bhatt, and P. M. Dreyfus, Intraventricular cryptococcal granuloma, Neurology 21:728–734, 1971.

    Google Scholar 

  131. L. Garcia-Buñuel and V. M. Garcia-Buñuel, Cerebrospinal fluid levels of free myoinositol in some neurological disorders, Neurology 15:348–350, 1965.

    Google Scholar 

  132. R. S. Clements, Jr., L. D. Prockop, and A. I. Winegrad, Acute cerebral oedema during treatment of hyperglycemia, Lancet 2:384–386, 1968.

    Google Scholar 

  133. L. D. Prockop, Hyperglycemia, polyol accumulation, and increased intracranial pressure, Arch. Neurol. 25:126–140, 1971.

    Google Scholar 

  134. W. V. McDermott, Jr., R. D. Adams, and A. C. Riddell, Ammonia levels in blood and cerebrospinal fluid, Proc. Soc. Exptl. Biol. Med. 88:380–383, 1955.

    Google Scholar 

  135. A. Ciplea, N. Balta, C. Stancu, and W. Dragulescu, The distribution of ammonium nitrogen in venous blood, ascites, and cerebrospinal fluid in cases of hepatic cirrhosis, Rev. Roum. Physiol. 7:163–169, 1970.

    Google Scholar 

  136. W. Q. Wolfson, R. Levine, and M. Tinsley, The transport and excretion of uric acid in man. I. True uric acid in normal cerebrospinal fluid, in plasma, and in ultrafiltrates of plasma,J. Clin. Invest. 26:991–994, 1947.

    Google Scholar 

  137. J. R. Cockrill, Non-electrolytes, their distribution between the blood and cerebrospinal fluid, Arch. Neurol. Psychiat. 25:1297–1305, 1931.

    Google Scholar 

  138. M. D. Bornstein, Presence and action of acetylcholine in experimental brain trauma,J. Neurophysiol. 9:347–366, 1946.

    Google Scholar 

  139. B. K. Siesjo and S. C. Sorensen, eds., “Ion Homeostasis of the Brain,” Alfred Benzon Symposium III, Munksgaard, Copenhagen, 1971.

    Google Scholar 

  140. R. Katzman, Effect of electrolyte disturbance on the central nervous system, Ann. Rev. Med. 17:197–212, 1966.

    Google Scholar 

  141. M. W. B. Bradbury, Water and electrolyte and acid-base disorders in neurologic disease, in “Clinical Disorders of Fluid and Electrolyte Metabolism” (M. H. Maxwell and C. R. Kleeman, eds.), McGraw-Hill, New York, in press.

    Google Scholar 

  142. D. H. Ingvar, N. A. Lassen, B. K. Siesio, and E. Skinhoi, eds., Cerebral blood flow and cerebro-spinal fluid, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.

    Google Scholar 

  143. B. K. Siesjo and A. Kjallquist, A new theory for the regulation of the extracellular pH in the brain, Scand. J. Clin. Lab. Invest. 24:1–9, 1969.

    Google Scholar 

  144. I. R. Cameron, Acid-base changes in cerebrospinal fluid. Brit. J. Anaesthesiol. 41:213–221, 1969.

    Google Scholar 

  145. J. B. Posner and F. Plum, Spinal-fluid pH and neurologic symptoms in systemic acidosis, New Engl. J. Med. 277:605–613, 1967.

    Google Scholar 

  146. G. B. Wallace and B. B. Brodie, Distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid,J. Pharmacol. Exptl. Therap. 65:220–226, 1939.

    Google Scholar 

  147. V. Fencl, T. B. Miller, and J. R. Pappenheimer, Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid, Am. J. Physiol. 210:459–472, 1966.

    Google Scholar 

  148. V. Fencl, J. R. Vale, and J. R. Broch, Cerebral blood flow and pulmonary ventilation in metabolic acidosis and alkalosis, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.

    Google Scholar 

  149. J. B. Posner and F. Plum, Independence of blood and cerebrospinal fluid lactate, Arch. Neurol. 16:492–496, 1967.

    Google Scholar 

  150. F. Plum and J. B. Posner, Blood and cerebrospinal fluid lactate during hyperventilation, Am. J. Physiol. 212:864–870, 1967.

    Google Scholar 

  151. A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78: 433–447, 1970.

    Google Scholar 

  152. A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:448–458, 1970.

    Google Scholar 

  153. L. D. Prockop, Cerebrospinal fluid lactic acid. Clearance and effect on facilitated diffusion of a glucose analogue, Neurology 18:189–196, 1968.

    Google Scholar 

  154. L. Granholm, Studies of the lactate/pyruvate system of brain and cerebrospinal fluid, Thesis, Student Literature, Lund, 1969.

    Google Scholar 

  155. B. K. Siesjo, L. Granholm, and A. Kiallquist, Regulation of lactate and pyruvate levels in the CSF, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.

    Google Scholar 

  156. I. Leusen, J. Weyne, and G. Demeester, Acid-base and lactate/pyruvate changes in CSF and brain, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.

    Google Scholar 

  157. R. Zupping, A. E. Kaasik, and F. Rauidam, Cerebrospinal fluid metabolic acidosis and brain oxygen supply, Arch. Neurol. 25:33–38, 1971.

    Google Scholar 

  158. D. M. Woodburry, in “Biology of Neuroglia” (W. R. Windel, ed.), pp. 120–127, C. C. Thomas, Springfield, Ill., 1958.

    Google Scholar 

  159. H. Davson and M. Pollay, The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier,J. Physiol. 167:247–255, 1963.

    Google Scholar 

  160. L. Bakay, Studies in sodium exchange: Experiments with plasma, cerebrospinal fluid and normal, injured, and embryonic brain tissue, Neurology 10:564–571, 1960.

    Google Scholar 

  161. D. Macaulay and M. Watson, Hypernatraemia in infants as a cause of brain damage, Arch. Dis. Child. 42:485–491, 1967.

    Google Scholar 

  162. P. H. Morris-Jones, I. B. Houston, and R. C. Evans, Prognosis of the neurological complications of acute hypernatraemia, Lancet 2:1385–1389, 1967.

    Google Scholar 

  163. N. W. Elton, W. J. Elton, and J. P. Nazareno, Pathology of acute salt poisoning in infants, Am. J. Clin. Pathol. 39:252–264, 1963.

    Google Scholar 

  164. D. Pleasure and M. Goldberg, Neurogenic hypernatremia, Arch. Neurol. 15:78–87, 1966.

    Google Scholar 

  165. G. H. Glaser, Sodium and seizures, Epilepsia 5:97–111, 1964.

    Google Scholar 

  166. R. E. Frusz, Hyponatremia, Medicine 42:149, 1963.

    Google Scholar 

  167. J. W. Stormont and C. Waterhouse, Severe hyponatremia associated with pneumonia, Metab. Clin. Exper. 11:1181–1186, 1962.

    Google Scholar 

  168. F. C. Bartter and W. B. Schwartz, The syndrome of inappropriate secretion of antidiuretic hormone, Am. J. Med. 42:790–806, 1967.

    Google Scholar 

  169. A. A. Faris and C. M. Poser, Experimental production of focal neurologic deficits by systemic hyponatremia, Neurology 14:206–211, 1964.

    Google Scholar 

  170. M. W. B. Bradbury and B. Stulcova, Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid,J. Physiol. 208:415–430, 1970.

    Google Scholar 

  171. M. W. B. Bradbury and C. R. Kleeman, Stability of the potassium content of cerebrospinal fluid and brain, Am. J. Physiol. 213:519–528, 1967.

    Google Scholar 

  172. M. W. B. Bradbury, Potassium homeostasis in cerebrospinal fluid, in “Homeostasis of the Brain” (B. K. Seisjo and S. C. Sorensen, eds.), Munksgaard, Copenhagen, 1971.

    Google Scholar 

  173. J. W. Conn, Presidential address. II. Primary aldosteronism, a new clinical syndrome,J. Lab. Clin. Med. 45:6–17, 1955.

    Google Scholar 

  174. D. Held, V. Fencl, and J. R. Pappenheimer, Electrical potential of cerebrospinal fluid,J. Neurophysiol. 27:942–959, 1964.

    Google Scholar 

  175. J. Abbott, H. Davson, I. Glen, and N. Grant, Chloride transport and potential across the blood-CSF barrier, Brain Res. 29:185–193, 1971.

    Google Scholar 

  176. S. B. Friedman, W. G. Austen, R. E. Rieselbach, J. B. Block, and D. P. Rall, Effect of hypochloremia on cerebrospinal fluid chloride concentration in a patient with anorexia nervosa and in dogs, Proc. Soc. Exptl. Biol. Med. 114:801–805, 1963.

    Google Scholar 

  177. M. W. B. Bradburry, J. Stubbs, I. E. Hughes, and P. Parker, The distribution of potassium sodium, chloride, and urea between lumbar cerebrospinal fluid and blood serum in human subjects, Clin. Sci. 25:97–105, 1963.

    Google Scholar 

  178. L. Graziani, A. Escriva, and R. Katzman, Exchange of calcium between blood, brain, and cerebrospinal fluid, Am. J. Physiol. 208:1058–1064, 1965.

    Google Scholar 

  179. R. Kaplan, L. Graziani, A. Escriva, and R. Katzman, The effects of ouabain, CO2, EDTA and hypercalcemia on CSF calcium, Physiologist 8:205, 1965.

    Google Scholar 

  180. M. M. Mandell, Recurrent psychotic depression associated with hypercalcemia and parathyroid adenoma, Am. J. Psychiat. 117:234–234, 1960.

    Google Scholar 

  181. M. W. B. Bradburry, C. R. Leeman, H. Bagdoyanh, and A. Berberia, The calcium and magnesium content of skeletal muscle, brain, and cerebrospinal fluid as determined by atomic absorption flame photometry,J. Lab. Clin. Med. 71:884–892, 1968.

    Google Scholar 

  182. F. C. Bartter, The parathyroid gland and its relationship to disease of the nervous system, Ass. Res. Nerv. Ment. Dis. 32:1–20, 1953.

    Google Scholar 

  183. W. E. C. Wacker and B. L. Vallee, Magnesium metabolism, New Engl. J. Med, 159:431–438, 1958.

    Google Scholar 

  184. J. Woodbury, K. Lyons, R. Carretta, A. Hahn, and J. F. Sullivan, Cerebrospinal fluid and serum levels of magnesium, zinc. and calcium in man, Neurology 18:700–705, 1968.

    Google Scholar 

  185. R. A. Fishman, Neurological aspects of magnesium metabolism, Arch. Neurol. 12:562–569, 1965.

    Google Scholar 

  186. W. R. Faulkner, J. W. King, and H. C. Damm, eds., “Handbook of Clinical Laboratory Data,” Chemical Rubber Company, Cleveland, 1968.

    Google Scholar 

  187. H. L. Rosomoff and F. T. Zugibe, Distribution of intracranial contents in experimental edema, Arch. Neurol. 9:26–34, 1963.

    Google Scholar 

  188. E. Young and R. F. Bradley, Cerebral edema with irreversible coma in severe diabetic ketoacidosis, New Engl. J. Med. 276:665–669, 1967.

    Google Scholar 

  189. D. K. McCurdy, Hyperosmolar hyperglycemic nonketotic diabetic coma, Med. Clin. N. Am. 54:683–699, 1970.

    Google Scholar 

  190. M. Maccario, Neurological dysfunction associated with nonketotic hyperglycemia, Arch. Neurol. 19:525–534, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Prockop, L.D. (1973). Disorders of Cerebrospinal Fluid and Brain Extracellular Fluid. In: Gaull, G.E. (eds) Biology of Brain Dysfunction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2667-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2667-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2669-4

  • Online ISBN: 978-1-4684-2667-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics