Skip to main content

Energy Bands

  • Chapter
  • First Online:
The Chemical Structure of Solids

Part of the book series: Treatise on Solid State Chemistry ((TSSC,volume 1))

Abstract

The author of this chapter was not even born when the pioneering studies of the band structure of solids were being conducted by Slater, Wigner, Seitz, and others in the 1930’s, and he will not presume to paraphrase those early achievements. Suffice it to say that most of the ground rules for the description of energy bands in crystals were worked out rather thoroughly at that time. Despite having such early and respectable antecedents, band structure theory has enjoyed a period of hectic activity since about 1960—not only hectic, but also successful, since, over a wide area of solid-state theory, the balance has tipped from puzzlement to ennui in a single decade. Why? The answer is not to be sought on the back of any theorist’s envelope, but rather in two developments which indirectly facilitated and stimulated our theoretical understanding. These are the advent of high-speed computers and the refinement of experimental techniques, two aspects of the electronic revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Slater, Quantum Theory of Molecules and Solids, McGraw-Hill, New York (1965).

    Google Scholar 

  2. J. Callaway, Energy Band Theory, Academic, New York (1964).

    Google Scholar 

  3. J. M. Ziman, The calculation of Bloch functions, Solid State Phys.26, 1–101 (1971).

    CAS  Google Scholar 

  4. E. P. Wigner, Effects of the electron interaction on the energy levels of electrons in a metal, Trans. Faraday Soc. 34:678–685 (1938).

    CAS  Google Scholar 

  5. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev.136, 864–867 (1964).

    Google Scholar 

  6. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev.140, 1133–8 (1965).

    Google Scholar 

  7. L. J. Sham and W. Kohn, One-particle properties of an inhomogeneous interacting electron gas, Phys. Rev.145, 561–7 (1966).

    CAS  Google Scholar 

  8. J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev.81, 385–390 (1951).

    CAS  Google Scholar 

  9. L. Hedin and S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid State Phys.23, 1–181 (1969).

    CAS  Google Scholar 

  10. J. Hubbard, The description of collective motion in terms of many-body perturbation theory. II, Proc. Roy. Soc.A243, 336–352 (1958).

    Google Scholar 

  11. V. Heine and D. Weaire, Pseudopotential theory of cohesion and structure, Solid State Phys.24, 249–463 (1970).

    CAS  Google Scholar 

  12. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander, Electron correlations at metallic densities, Phys. Rev.176, 589–599 (1968).

    CAS  Google Scholar 

  13. R. W. Shaw, Jr. and W. W. Warren, Jr., Enhancement of the Korringa constant in alkali metals by electron-electron interaction, Phys. Rev.3, 1562–1568 (1971).

    Google Scholar 

  14. L. Kleinman, New approximation for screened exchange and the dielectric constant of metals, Phys. Rev.160, 585–590 (1967).

    CAS  Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics, 4th ed., Wiley, New York (1971).

    Google Scholar 

  16. C. Kittel, Quantum Theory of Solids, Wiley, New York (1963).

    Google Scholar 

  17. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford (1936).

    Google Scholar 

  18. L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal, Phys. Rev.89, 1189–1193 (1953).

    Google Scholar 

  19. E. O. Kane, Critical point structure in photoelectric emission energy distributions, Phys. Rev.175, 1039–1048 (1968).

    Google Scholar 

  20. R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, Formulas and numerical tables for overlap integrals, J. Chem. Phys.17, 1248–1267 (1949).

    CAS  Google Scholar 

  21. R. Hoffmann, An extended Hückel theory. I. Hydrocarbons, J. Chem. Phys.39, 1397–1412 (1963).

    CAS  Google Scholar 

  22. T. L. Gilbert, in Sigma Molecular Orbital Theory (O. Sinanoglu, K. B. Wiberg, eds.), pp. 249–55, Benjamin, New York (1969).

    Google Scholar 

  23. M. F. Thorpe, Two-magnon bound state in fce ferromagnets, Phys. Rev.4, 1608–1613 (1971).

    Google Scholar 

  24. T. Wolfram and J. Callaway, Spin wave impurity states in ferromagnets, Phys. Rev.130, 2207–2217 (1963).

    CAS  Google Scholar 

  25. E. Frikkee, Calculations on magnon impurity modes of a pair defect in a facecentered cubic ferromagnet, J. Phys. C2, 345–355 (1969).

    Google Scholar 

  26. M. F. Thorpe and D. Weaire, Electronic properties of an amorphous solid. II. Further aspects of the theory, Phys. Rev.4, 3518–3527 (1971).

    Google Scholar 

  27. D. Weaire and M. F. Thorpe, in Computational Methods for Large Molecules and Localized States in Solids (F. Herman, A. D. McLean, and R. K. Nesbet, eds.), pp. 295–315, Plenum, New York (1973).

    Google Scholar 

  28. F. Ducastelle and F. Cyrot-Lackmann, Moments developments and their application to the electronic charge distribution of d-bands, J. Phys. Chem. Solids31, 1295–1306 (1970).

    CAS  Google Scholar 

  29. M. F. Thorpe, Random walks in polytype structures, J. Math. Phys. 294-299 (1972).

    Google Scholar 

  30. G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev.52, 191–197 (1937).

    CAS  Google Scholar 

  31. W. Kohn, Analytic properties of bloch waves and Wannier functions, Phys. Rev.115, 809–821 (1959).

    Google Scholar 

  32. G. Ferreira and N. J. Parada, Wannier functions and the phases of bloch functions, Phys. Rev.2, 1614–1618 (1970).

    Google Scholar 

  33. E. I. Blount, Formalisms of band theory, Solid State Phys.13, 305–373 (1962).

    CAS  Google Scholar 

  34. P. W. Anderson, Self-consistent pseudopotentials and ultralocalized functions for energy bands, Phys. Rev. Letters21, 13–16 (1968).

    Google Scholar 

  35. W. Kohn, in Computational Methods for Large Molecules and Localized States in Solids. (F. Herman, A. D. McLean, and R. K. Nesbet, eds.), pp. 245–249, Plenum, New York (1973).

    Google Scholar 

  36. N. W. Ashcroft, in Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), Plenum, New York (1971) pp. 368–372.

    Google Scholar 

  37. A. R. Williams and D. Weaire, Validity of perturbation theory. I, J. Phys.33, 387–397 (1970).

    Google Scholar 

  38. V. Heine, The pseudopotential concept, Solid State Phys.24, 1–36 (1970).

    CAS  Google Scholar 

  39. J. B. Pendry, The cancellation theorem in pseudopotential theory, J. Phys. C 4, 427–434 (1971).

    Google Scholar 

  40. W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).

    Google Scholar 

  41. J. M. Ziman, The T matrix, the K matrix, d-bands and l-dependent pseudopotentials in the theory of metals, Proc. Phys. Soc.86, 337–353 (1965).

    CAS  Google Scholar 

  42. A. O. E. Animalu and V. Heine, The screened model potential for 25 elements, Phil. Mag.12, 1249–1270 (1965).

    CAS  Google Scholar 

  43. M. L. Cohen and T. K. Bergstresser, Band structures and pseudopotential form factors for 14 semiconductors of the diamond and zinc-blende structures, Phys. Rev.141, 789–796 (1966).

    CAS  Google Scholar 

  44. M. D. Stafleu and A. R. de Vroomen, Fermi surface and pseudopotential coefficients in white tin, Phys. Stat. Sol.23, 683–696 (1967).

    CAS  Google Scholar 

  45. M. A. C. Devillers and A. R. de Vroomen, Comments on pseudopotential form factors for white Sn, Phys. Rev.4, 4631–4632 (1971).

    Google Scholar 

  46. J. H. Tripp, P. M. Everett, W. L. Gordon, and R. W. Stark, Fermi surface of Be and its pressure dependence, Phys. Rev.180, 669–678 (1969).

    CAS  Google Scholar 

  47. D. Jones and A. H. Lettington, The Optical properties and electronic structure of magnesium, Proc. Phys. Soc.92, 948–955 (1967).

    CAS  Google Scholar 

  48. R. Stark and L. Falicov, Band structure and Fermi surface of zinc and cadmium, Phys. Rev. Letters19, 795–798 (1967).

    CAS  Google Scholar 

  49. J. M. Dishman and J. A. Rayne, Magnetoresistance and Fermi surface topology of crystalline mercury, Phys. Rev.166, 728–745 (1968).

    CAS  Google Scholar 

  50. N. W. Ashcroft, The Fermi surface of aluminum, Phil. Mag.8, 2055–2083 (1963).

    CAS  Google Scholar 

  51. J. R. Anderson and A. V. Gold, Fermi surface, pseudopotential coefficients, and spin-orbit coupling in lead, Phys. Rev.139, 1459–1481 (1965).

    CAS  Google Scholar 

  52. M. L. Cohen and V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application, Solid State Phys.24, 37–248 (1970).

    CAS  Google Scholar 

  53. E. Wigner and F. Seitz, On the constitution of metallic sodium. I, II, Phys. Rev.43, 804–810 (1933).

    CAS  Google Scholar 

  54. E. Wigner and F. Seitz, On the constitution of metallic sodium. I, II, Phys. Rev.46, 509–524 (1934).

    CAS  Google Scholar 

  55. F. S. Ham, Energy bands of alkali metals. I, Phys. Rev.128, 82–97 (1962).

    CAS  Google Scholar 

  56. S. L. Altmann, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), Academic, London (1968).

    Google Scholar 

  57. A. I. Gubanov, Cellular method for amorphous semiconductors, Sov. Phys.— Semiconductors5, 463–466 (1971).

    Google Scholar 

  58. D. Weaire, Some properties of random tetrahedrally coordinated structures, J. Noncryst Solids6, 181–186 (1971).

    CAS  Google Scholar 

  59. J. C. Phillips and L. Kleinman, New method for calculating wave functions in crystals and molecules, Phys. Rev.116, 287–294 (1959).

    CAS  Google Scholar 

  60. C. Herring, A new method for calculating wave functions in crystals, Phys. Rev.57, 1169–1177 (1940).

    Google Scholar 

  61. T. O. Woodruff, The orthogonalized plane wave method, Solid State Phys.4, 367–411 (1957).

    CAS  Google Scholar 

  62. K. Johnson, in Computational Methods for Large Molecules and Localized States in Solids (F. Herman and A. D. McLean, eds.), Plenum Press, New York (1973).

    Google Scholar 

  63. J. O. Dimmock, The calculation of electronic energy bands by the augmented plane wave method, Solid State Phys.26, 103–274 (1971).

    CAS  Google Scholar 

  64. B. Segall and F. S. Ham, The Green’s function method of Korringa, Kohn, and Rostoker for the calculation of the energy band structure of solids, Methods in Comp. Phys.8, 251–294 (1968).

    CAS  Google Scholar 

  65. B. Segall and F. S. Ham, Tables of structure constants for energy band calculations with the Green’s function method, Unpublished.

    Google Scholar 

  66. E. O. Kane, Band structure of silicon from an adjusted Heine Abarenkov calculation, Phys. Rev.146, 558–567 (1966).

    CAS  Google Scholar 

  67. J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev.94, 1498–1524 (1954).

    CAS  Google Scholar 

  68. A. B. Kunz, Energy bands and optical properties of LiCl, Phys. Rev.2, 5015–5024 (1970).

    Google Scholar 

  69. F. M. Mueller, Combined interpolation scheme for transition and noble metals, Phys. Rev.153, 659–669 (1967).

    CAS  Google Scholar 

  70. J. Hubbard, The approximate calculation of electronic band structure, Proc. Phys. Soc.92, 921–937 (1967).

    CAS  Google Scholar 

  71. R. L. Jacobs, The theory of transition metal band structures, J. Phys. C 1, 492–506 (1968).

    Google Scholar 

  72. F. Cyrot-Lackmann and F. Ducastelle, Moments developments. I, J. Phys. Chem. Solids31, 1295–1306 (1970).

    Google Scholar 

  73. F. Ducastelle and F. Cyrot-Lackmann, Moments developments. II, J. Phys. Chem. Solids32, 285–301 (1971).

    CAS  Google Scholar 

  74. R. Haydock, V. Heine, and M. J. Kelly, Electronic structure based on the local atomic environment for tight-binding d-bands, J. Phys. C 5, 2845–2858 (1972).

    CAS  Google Scholar 

  75. D. G. Pettifor, Theory of crystal structures of transition metals, J. Phys. C 3, 367–377 (1970).

    CAS  Google Scholar 

  76. D. Weaire, Band effective masses for nineteen elements, Proc. Phys. Soc.92, 956–961 (1967).

    CAS  Google Scholar 

  77. R. W. Shaw, Jr., Effective masses and perturbation theory in the theory of simple metals, J. Phys. C 2, 2350–2365 (1969).

    CAS  Google Scholar 

  78. P. Löwdin, A note on the quantum mechanical perturbation theory, J. Chem. Phys.19, 1396–1401 (1951).

    Google Scholar 

  79. A. O. E. Animalu, Nonlocal dielectric screening in metals, Phil. Mag.11, 379–388 (1965).

    CAS  Google Scholar 

  80. E. O. Kane, The k · p Method, Semiconductors and Semimetals1, 75–100 (1966).

    Google Scholar 

  81. J. P. Van Dyke, First principles full-zone k · p extrapolations critically evaluated, Phys. Rev.4, 3375–3382 (1971).

    Google Scholar 

  82. G. Gilat and L. J. Raubenheimer, Accurate numerical method for calculating frequency distribution functions in solids, Phys. Rev.144, 390–395 (1966).

    CAS  Google Scholar 

  83. E. O. Kane, Need for a nonlocal correlation potential in silicon, Phys. Rev.4, 1910–1916 (1971).

    Google Scholar 

  84. B. Segall and G. Juras, Effective mass parameters for electronic energy bands, Phys. Rev.4, 3277–3280 (1971).

    Google Scholar 

  85. G. Juras, to be published.

    Google Scholar 

  86. D. J. Nagel and W. L. Baun, in X-Ray Spectroscopy (L. V. Azaroff, ed.), Chapter 9, McGraw-Hill, New York (1973).

    Google Scholar 

  87. M. J. G. Lee, The Fermi surfaces of the alkali metals, Crit. Rev. Solid State Sci.2, 85–120 (1971).

    CAS  Google Scholar 

  88. A. P. Cracknell, The Fermi surface. I, II, Adv. Phys.18, 681–818 (1969).

    CAS  Google Scholar 

  89. A. P. Cracknell, The Fermi surface. I, II, Adv. Phys.20, 1–141 (1971).

    Google Scholar 

  90. W. B. Skinner, The soft X-ray spectroscopy of solids. I, Phil. Trans. Roy. Soc.A239, 95–134 (1940).

    CAS  Google Scholar 

  91. C. Gähwiller, F. C. Brown, and H. Fujita, Extreme ultraviolet spectroscopy with the use of a storage ring light. source, Rev. Sci. Instr.41, 1275–1281 (1970).

    Google Scholar 

  92. T. Sagawa, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 29–43, Academic, London (1968).

    Google Scholar 

  93. G. Wiech and E. Zöpf, Presented at Int. Conf. on Band Structure Spectroscopy of Metals and Alloys, Strathclyde, 1971, to be published; G. Wiech, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 59–70, Academic, London (1968).

    Google Scholar 

  94. L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands, Phys. Rev. Letters29, 1088–1092 (1972).

    CAS  Google Scholar 

  95. G. W. Rubloff, Far-ultraviolet reflectance spectra and the electronic structure of ionic crystals, Phys. Rev.5, 662–684 (1972).

    Google Scholar 

  96. J. C. Phillips, The fundamental optical spectra of solids, Solid State Phys.18, 55–164 (1972).

    Google Scholar 

  97. F. M. Mueller, Interpolation and k-space integration; A review, in Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), Plenum, New York (1971).

    Google Scholar 

  98. G. Dresselhaus and M.S. Dresselhaus, Fourier expansion for the electronic band structure in silicon and germanium, Phys. Rev.160, 649–679 (1967).

    CAS  Google Scholar 

  99. D. Brust, Electronic spectra of crystalline germanium and silicon, Phys. Rev.134, 1337–1353 (1964).

    CAS  Google Scholar 

  100. B. O. Seraphin, in Optical Properties of Solids (E. D. Haidemenakis, ed.), pp. 213–252, Gordon and Breach, New York (1970).

    Google Scholar 

  101. J. C. Phillips, Covalent Bonding in Crystals, Molecules and Polymers, Univ. of Chicago Press, Chicago, Ill. (1969).

    Google Scholar 

  102. A. I. Golashkin, A. I. Kopeliovich, and G. P. Motulevich, Determination of the pseudopotential Fourier components on the basis of interband transitions in the optical range, Soviet Phys.—JETP26, 1161–1166 (1968).

    Google Scholar 

  103. N. W. Ashcroft and K. Sturm, Interband absorption and the optical properties of polyvalent metals, Phys. Rev.3, 1898–1910 (1971).

    Google Scholar 

  104. W. A. Harrison, Band structure of aluminum, Phys. Rev.118, 1182–1189 (1960).

    CAS  Google Scholar 

  105. W. A. Harrison, Electronic structure of polyvalent metals, Phys. Rev.118, 1190–1208 (1960).

    CAS  Google Scholar 

  106. P. N. Butcher, The absorption of light by alkali metals, Proc. Phys. Soc.A64, 765–780 (1951).

    Google Scholar 

  107. H. Mayer and M. H. El Naby, Zum inneren lichtelektrischen Effect (Quantensprungabsorption) im Alkalimetall Kalium, Z. Physik174, 289–295 (1963).

    CAS  Google Scholar 

  108. F. Abeles, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 191–214, Academic, London (1968).

    Google Scholar 

  109. A. W. Overhauser, Spin-density wave antiferromagnetism in potassium, Phys. Rev. Letters13, 190–193 (1964).

    CAS  Google Scholar 

  110. N. V. Smith, Photoemission properties of metals, Crit. Rev. Solid State Sci.2, 45–83 (1971).

    CAS  Google Scholar 

  111. W. E. Spicer, Possible non-one-electron effects in the fundamental optical excitation spectra of certain crystalline solids and their effect on photoemission, Phys. Rev.154, 385–394 (1967).

    CAS  Google Scholar 

  112. D. E. Eastman and W. D. Grobman, Photoemission densities of intrinsic surface states for Si, Ge, and GaAs, Phys. Rev. Letters28, 1378–1381 (1972).

    CAS  Google Scholar 

  113. L. F. Wagner and W. E. Spicer, Observation of a band of silicon surface states containing one electron per surface atom, Phys. Rev. Letters28, 1381–1384 (1972).

    CAS  Google Scholar 

  114. T. M. Donovan and W. E. Spicer, Changes in the density of states of germanium on disordering as observed by photoemission, Phys. Rev. Letters21, 1572–1575 (1968).

    CAS  Google Scholar 

  115. D. E. Eastman, Photoemission studies of d-band structure in Sc, Y, Gd, Ti, Zr, Hf, V, Nb, Cr, and Mo, Solid State Commun.7, 1697–1699 (1969).

    CAS  Google Scholar 

  116. L. Onsager, Interpretation of the de Haas-van Alphen effect, Phil. Mag.43, 1006–1008 (1952).

    Google Scholar 

  117. I. M. Lifshitz and A. M. Kosevitch, Theory of magnetic susceptibility in metals at low temperatures, Soviet Phys.—JETP2, 636–645 (1956).

    Google Scholar 

  118. F. M. Mueller, New inversion scheme for obtaining Fermi surface radii from de Haas-van Alphen areas, Phys. Rev.148, 636–637 (1966).

    CAS  Google Scholar 

  119. L. R. Windmiller, J. B. Ketterson, and S. Hörnfeldt, De Haas-van Alphen effect in palladium, Phys. Rev.3, 4213–4231 (1971).

    Google Scholar 

  120. A. B. Pippard, The Dynamics of Conduction Electrons, Blackie and Son, London (1965).

    Google Scholar 

  121. L. J. Rouse and P. G. Varlashkin, Angular correlation studies of positron annihilation in copper-nickel alloys, Phys. Rev.4, 2377–2397 (1971).

    Google Scholar 

  122. R. I. Sharp, The lattice dynamics of niobium. I, II, J. Phys. C 2, 421-431; 432-433 (1969).

    Google Scholar 

  123. R. Stedman and G. Nilsson, Observations on the Fermi surface of aluminum by neutron spectrometry, Phys. Rev. Letters15, 634–637 (1965).

    CAS  Google Scholar 

  124. L. M. Falicov and V. Heine, The Many-body theory of electrons in metal or has a metal really got a Fermi surface? Adv. Phys.10, 57–105 (1961).

    CAS  Google Scholar 

  125. R. W. Shaw, Jr. and R. Pynn, Optimized model potential; Exchange and correlation corrections and calculation of magnesium phonon spectrum, J. Phys. C 2, 2071–2088 (1969).

    CAS  Google Scholar 

  126. M. A. Coulthard, Pressure dependence of phonon dispersion curves in simple metals, J. Phys. C 3, 820–834 (1970).

    CAS  Google Scholar 

  127. E. G. Brovman and Yu. Kagan, The phonon spectrum of metals, Soviet Phys.— JETP, 25, 365–382 (1967).

    Google Scholar 

  128. A. B. Kunz and N. O. Lipari, Electronic structure of NaBr, Phys. Rev.4, 1374–1381 (1971).

    Google Scholar 

  129. W. H. Adams, On the solution of the Hartree-Fock equation in terms of localized orbitals, J. Chem. Phys.34, 89–102 (1961).

    CAS  Google Scholar 

  130. T. L. Gilbert, in Molecular Orbitals in Chemistry, Physics, and Biology (P. O. Löwdin, ed.), Academic, New York, (1964).

    Google Scholar 

  131. F. C. Brown, C. Gähwiller, A. B. Kunz, and N. O. Lipari, Soft X-ray spectra of the lithium halides and their interpretation, Phys. Rev. Letters25, 927–930 (1970).

    CAS  Google Scholar 

  132. R. C. Chaney, C. C. Lin, and E. E. Lafon, Application of the method of tight binding to the calculation of the energy band structures of diamond, silicon, and sodium crystals, Phys. Rev.3, 459–472 (1971).

    Google Scholar 

  133. G. Leman and J. Friedel, On the description of covalent bonds in diamond lattice structures by a simplified tight binding approximation, J. Appl. Phys.33, 281–285 (1962).

    CAS  Google Scholar 

  134. F. Herman, R. L. Kortum, C. D. Kuglin, and J. L. Shay, in Proc. Int. Conf. on II–VI Semiconducting Compounds (D. G. Thomas, ed.), Benjamin, New York, (1967).

    Google Scholar 

  135. S. Groves and W. Paul, Band structure of gray tin, Phys. Rev. Letters11, 194–196 (1963).

    CAS  Google Scholar 

  136. V. Heine and R. O. Jones, Electronic band structure and covalency in diamond-type semiconductors, J. Phys. C 2, 719–732 (1969).

    Google Scholar 

  137. J. A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. I, II, III, Phys. Rev.182, 891–905 (1969). 187, 1007-1020 (1969); and to be published.

    Google Scholar 

  138. J. C. Phillips and J. A. Van Vechten, Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors, Phys. Rev.2, 2147–2160 (1970).

    Google Scholar 

  139. F. Herman and J. L. Shay, unpublished.

    Google Scholar 

  140. D. L. Carter and R. T. Bate (eds.), The Physics of Semimetals and Narrow-Gap Semiconductors, Pergamon, Oxford (1971).

    Google Scholar 

  141. F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N.J. (1963).

    Google Scholar 

  142. M. F. Thorpe and D. Weaire, to be published.

    Google Scholar 

  143. T. H. DiStefano and D. E. Eastman, Photoemission measurements of the valence levels of amorphous SiO2, Phys. Rev. Letters27, 1560–1562 (1971).

    CAS  Google Scholar 

  144. M. H. Reilly, Temperature dependence of the short-wavelength transmittance limit of vacuum-ultraviolet window materials. II, J. Phys. Chem. Solids31, 1041–1056 (1970).

    CAS  Google Scholar 

  145. L. F. Matteiss, Energy bands for the iron transition series, Phys. Rev.134, 970–973 (1964).

    Google Scholar 

  146. E. C. Snow and J. T. Waber, The APW energy bands for the body-centered and face-centered modifications of the 3d transition metals, Acta Met.17, 623–6235 (1969).

    CAS  Google Scholar 

  147. R. G. Lye and E. M. Logothetis, Optical properties and band structure of TiC, Phys. Rev.147, 622–635 (1966).

    CAS  Google Scholar 

  148. R. G. Lye, A simple model for the stability of transition metal carbides, in Proc. NBS 5th Materials Research Symp. to be published.

    Google Scholar 

  149. V. Ern and A. C. Swittendick, Electronic Band Structure of TiC, TiN, and TiO, Phys. Rev.137, 1927–1936 (1965).

    CAS  Google Scholar 

  150. L. F. Mattheiss, Electronic structure of the 3d transition metal monoxides, Phys. Rev. 5, 290–306; 307-315 (1972).

    Google Scholar 

  151. V. Heine and L. F. Mattheiss, Metal-insulator transition in transition metal oxides, J. Phys. C 4, L191–194 (1971).

    CAS  Google Scholar 

  152. N. H. March, Liquid Metals, Pergamon, Oxford (1968).

    Google Scholar 

  153. R. E. Borland, The nature of the electronic states in disordered one-dimensional systems, Proc. Roy. Soc.274, 459–529 (1963).

    Google Scholar 

  154. B. I. Halperin, Properties of a particle in a one-dimensional random potential, Adv. Chem. Phys.13, 123–177 (1967).

    CAS  Google Scholar 

  155. H. L. Frisch and S. P. Lloyd, Electron levels in a one-dimensional random lattice, Phys. Rev.120, 1175–89 (1960).

    CAS  Google Scholar 

  156. J. Hori, Spectral Properties of Disordered Chains and Lattices, Pergamon, Oxford (1968).

    Google Scholar 

  157. B. Velicky, S. Kirkpatrick, and E. H. Ehrenreich, Single-site approximations in the electronic theory of simple binary alloys, Phys. Rev.175, 747–766 (1968).

    Google Scholar 

  158. G. F. Koster and J. C. Slater, Simplified impurity calculation, Phys. Rev.96, 1208–1223 (1954).

    CAS  Google Scholar 

  159. P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev.156, 809–813 (1967).

    CAS  Google Scholar 

  160. M. Lax, Multiple scattering of waves, Rev. Mod. Phys.23, 287–310 (1951).

    Google Scholar 

  161. P. Lloyd, Exactly soluble model of electronic states in a three-dimensional disordered Hamiltonian: Nonexistence of localized states, J. Phys. C 2, 1717–1725 (1969).

    Google Scholar 

  162. J. A. Blackman, D. M. Esterling, and N. F. Berk, Generalized locator-coherentpotential approach to binary alloys, Phys. Rev.4, 2412–2428 (1971).

    Google Scholar 

  163. D. J. Thouless, The Anderson model, J. Noncryst. Solids8-10, 461–469 (1972).

    Google Scholar 

  164. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev.109, 1492–1505 (1958).

    CAS  Google Scholar 

  165. J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C (Solid State Physics) 5, 807–820 (1972).

    Google Scholar 

  166. J. M. Ziman, Localization of electrons in ordered and disordered systems. I, J. Phys. C 1, 1532–1538 (1968).

    Google Scholar 

  167. N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials, Oxford Univ. Press (1971).

    Google Scholar 

  168. M. H. Cohen, Review of the theory of amorphous semiconductors, J. Noncryst. Solids4, 391–409 (1970).

    CAS  Google Scholar 

  169. S. Kirkpatrick and T. P. Eggarter, On the localized states of a binary alloy, Phys. Rev.6, 3598–609 (1972).

    CAS  Google Scholar 

  170. E. N. Economou and M. H. Cohen, Localization in disordered materials: Existence of mobility edges, Phys. Rev. Letters25, 1445–1448 (1970).

    CAS  Google Scholar 

  171. M. Hulin, LCAO energies and wave functions in a covalent semiconductor with topological disorder, Phys. Stat. Sol.52, 119–1125 (1972).

    Google Scholar 

  172. G. M. Stocks, R. W. Williams, and J. S. Faulkner, Densities of states in paramagnetic Cu-Ni alloys, Phys. Rev.4, 4390–4405 (1971).

    Google Scholar 

  173. N. F. Mott, Conduction in noncrystalline materials. III, Phil Mag.19, 835–852 (1969).

    CAS  Google Scholar 

  174. D. E. Eastman and W. D. Grobman, Photoemission studies of Si, Ge and GaAs using synchrotron radiation in the 7-25 eV range, Proc. 11th International Conference on the Physics of Semiconductors, Warsaw (1972), pp. 889-895.

    Google Scholar 

  175. D. Brust, Electronic spectrum, k conservation, and photoemission in amorphous germanium, Phys. Rev. Letters23, 1232–1234 (1969).

    CAS  Google Scholar 

  176. J. Keller and J. M. Ziman, Long range order, short range order and energy gaps, J. Noncryst. Solids, 8-10, 111–121 (1972).

    CAS  Google Scholar 

  177. J. C. Phillips, Electronic structure and optical spectra of amorphous semiconductors, Physica Status Solidi44, 1–4 (1971).

    Google Scholar 

  178. D. Weaire, Existence of a gap in the electronic density of states of a tetrahedrally bonded solid of arbitrary structure, Phys. Rev. Letters26, 1541–1543 (1971).

    CAS  Google Scholar 

  179. J. C. Phillips, Covalent networks and amorphous semiconductors, Comments in Solid State Phys.4, 9–11 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Weaire, D. (1973). Energy Bands. In: Hannay, N.B. (eds) The Chemical Structure of Solids. Treatise on Solid State Chemistry, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-2661-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2661-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-2663-2

  • Online ISBN: 978-1-4684-2661-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics