Skip to main content

The Bacterial Phosphoenolpyruvate Phosphotransferase System

  • Chapter

Abstract

Translocation of certain carbohydrates (monosaccharides and disaccharides) across the cytoplasmic membranes of bacteria can occur by two major processes. These processes are distinguished by the nature of the primary energy source involved as well as the actual mechanism by which the translocation proceeds. The two systems are schematically shown in Figure 1 and can be described in the following manner:

  • Active transport. Systems of this type accumulate the solute in an unaltered form in the cytoplasm. The energy for the translocation is primarily derived from an energized membrane state (membrane potential or proton-motive force derived from electron transport or ATP hydrolysis).

  • Group translocation. This differs thermodynamically from “active transport” since the solute is accumulated in the cytoplasm in a derivatized form. Group translocation has so far been associated only with the translocation of sugars; these are accumulated in the form of phosphate esters. The mechanism responsible for this form of translocation is the phosphotransferase system (Figure 2) which uses phosphoenolpyruvate as its primary source of energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., and Epstein, W., 1974, Phosphotransferase system enzymes II as chemoreceptors for certain sugars in Escherichia coli Chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 71:2895.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, B., Weigel, N., Kundig, W., and Roseman, S., 1971, Sugar transport. III: Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, J. Biol. Chem. 246:7023.

    PubMed  CAS  Google Scholar 

  • Berkowitz, D., 1971, D-Mannitol utilization in Salmonella typhimurium, J. Bacteriol. 105:232.

    PubMed  CAS  Google Scholar 

  • Brown, C. E., and Romano, A. H., 1969, Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans, J. Bacteriol. 100:1198.

    PubMed  CAS  Google Scholar 

  • Burd, G. I., Andreeva, I. V., Shabolenko, V. P., and Gershanovich, V. N., 1968, Absence of phosphotransferase system components in mutant Escherichia coli K12 with a disrupted carbohydrate transfer system, Mol. Biol. 2:89.

    CAS  Google Scholar 

  • Burd, G. I., Boil’shakova, T. N., and Gershanovich, V. N., 1973, Relationship between β-galac-toside transport and phosphoenolpyruvate dependent phosphotransferase system in Escherichia coli K12, Mol. Biol. 7:318.

    CAS  Google Scholar 

  • Cirillo, V. P., and Razin, S., 1972, Distribution of phosphoenolpyruvate-dependent sugar phosphotransferase systems in Mycoplasma, J. Bacteriol. 113:212.

    Google Scholar 

  • Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 112:17.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., Anderson, B. P., Grogan, W. E., Jr., Wenzel, D. J., Engler, M., and Roseman, S., 1974a, Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120:245.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., Postma, P. W., and Roseman, S., 1974b, A mutation affecting membrane-bound enzymes in Salmonella typhimurium, Fed. Proc. 33:1326.

    Google Scholar 

  • Egan, J. B., and Morse, M. L., 1965, Carbohydrate transport in Staphylococcus aureus. II. Characterization of a pleiotropic transport mutation, Biochim. Biophys. Acta 109:172.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, W., Jewett, S., and Fox, C. F., 1970, Isolation and mapping of phosphotransferase mutants in Escherichia coli, J. Bacteriol. 104:293.

    Google Scholar 

  • Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent phosphotransferase system in β-glucoside transport in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 59:988.

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel, D. G., 1968, The phosphoenolpyruvate initiated pathway of fructose metabolism in Escherichia coli, J. Biol. Chem. 243:6458.

    PubMed  CAS  Google Scholar 

  • Freese, E., Klofat, A., and Galliers, E., 1970, Commitment to sporulation and induction of glucose phosphoenolpyruvate phosphotransferase in Bacillus subtilis, Biochim. Biophys. Acta 222:265.

    Article  PubMed  CAS  Google Scholar 

  • Gershanovich, V. N., Yurotskaya, N. V., and Burd, G. I., 1970, Pleiotropic disturbances of enzyme systems in Escherichia coli mutants with defects in Roseman’s phosphotransferase system, Mol. Biol. 4:534.

    CAS  Google Scholar 

  • Hanson, T. E., and Anderson, R. L., 1968, Phosphoenolpyruvate-dependent formation of D-fructose-1-phosphate by a four component phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 61:269.

    Article  PubMed  CAS  Google Scholar 

  • Harold, F. N., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.

    PubMed  CAS  Google Scholar 

  • Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport. V: A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941.

    PubMed  CAS  Google Scholar 

  • Hengstenberg, W., Egan, J. B., and Morse, M. L., 1967, Carbohydrate transport in Staphylococcus aureus: The accumulation of phosphorylated carbohydrate derivatives and evidence for a new enzyme splitting lactose-phosphate, Proc. Natl. Acad. Sci. U.S.A. 58:274.

    Article  PubMed  CAS  Google Scholar 

  • Hengstenberg, W., Penberthy, W. K., Hill, K. L., and Morse, M. L., 1969, Phosphotransferase system of Staphylococcus aureus: Its requirement for the accumulation and metabolism of gaiac-tosides, J. Bacteriol. 99:383.

    PubMed  CAS  Google Scholar 

  • Hugo, H. von, and Gottschalk, G., 1974, Distribution of 1-phosphofructokinase and the phospho-enolpyruvate phosphotransferase activity in Clostridia, FEBS Lett. 46:106.

    Article  Google Scholar 

  • Kabagk, H. R., 1968, The role of the phosphoenolpyruvate phosphotransferase system in the transport of sugars by isolated membrane preparation of Escherichia coli, J. Biol. Chem. 243:3711.

    Google Scholar 

  • Kornberg, H. L., and Smith, J., 1971, Genetic control of glucose uptake by Escherichia coli, FEBS Lett. 20:270.

    Article  Google Scholar 

  • Korte, T., and Hengstenberg, W., 1971, Purification and characterization of the inducible lactose specific membrane-bound complex of the Staphylococcus aureus phosphoenolpyruvate-dependent phosphotransferase system, Eur. J. Biochem. 23:295.

    Article  PubMed  CAS  Google Scholar 

  • Kundig, W., 1974a, Molecular interactions in the bacterial phosphoenolpyruvate phosphotransferase system, J. Supramol. Struct. 2:695.

    Article  PubMed  CAS  Google Scholar 

  • Kundig, W., 1974b, The bacterial phosphoenolpyruvate phosphotransferase system: Molecular interactions and biological function, Proceedings 1st Inter sectional Congress of the International Societies for Microbiology, Tokyo, Japan, 1974, vol. 1, p. 613.

    Google Scholar 

  • Kundig, W., and Roseman, S., 1971a, Sugar transport. I: Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem. 246:1393.

    PubMed  CAS  Google Scholar 

  • Kundig, W., and Roseman, S., 1971b, Sugar transport. II: Characterization of constitutive membrane-bound enzyme II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407.

    PubMed  CAS  Google Scholar 

  • Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 52:1067.

    Article  PubMed  CAS  Google Scholar 

  • Kundig, W., Kundig, F. D., Anderson, B., and Roseman, S., 1966, Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system, J. Biol. Chem. 241:3243.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., 1971, Biochemistry, Worth Publishers, Inc., New York.

    Google Scholar 

  • Levinson, S. L., and Krulwich, T. A., 1973, Alternate pathway for L-rhamnose transport in Arthrob acter pyridinolis, Arch. Biochem. Biophys. 160:445.

    Article  Google Scholar 

  • Lin, E. C. C., 1970, The genetics of bacterial transport systems, Annu. Rev. Cenet. 4:225.

    Article  CAS  Google Scholar 

  • McKay, L. L., Walter, L. A., Sandine, W. E., and Elliker, D. R., 1969, Involvement of phosphoenolpyruvate in lactose utilization by group N Streptococci, J. Bacteriol. 99:603.

    PubMed  CAS  Google Scholar 

  • Nakazawa, T., Simoni, R. D., Hays, J. B., and Roseman, S., 1971, Phosphorylation of a sugar-specific protein component of the lactose transport system in Staphylococcus aureus, Biochem. Biophys. Res. Commun. 42:836.

    Article  PubMed  CAS  Google Scholar 

  • Neville, M. M., Suskind, S. R., and Roseman, S., 1971, A derepressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246:1294.

    PubMed  CAS  Google Scholar 

  • Pastan, I., and Perlman, R. C., 1969, Repression of β-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli, J. Biol. Chem. 244:5836.

    PubMed  CAS  Google Scholar 

  • Patni, N. J., and Alexander, J. K., 1971a, Utilization of glucose by Clostridium thermocellum: Presence of glucokinase and other glycolytic enzymes in cell extracts, J. Bacteriol. 105:220.

    PubMed  CAS  Google Scholar 

  • Patni, N. J., and Alexander, J. K., 1971b, Catabolism of fructose and mannitol in Clostridium thermocellum: Presence of phosphoenolpyruvate: fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase and mannitol 1-phosphate dehydrogenase in cell extracts, J. Bacteriol. 105:276.

    Google Scholar 

  • Romano, A. H., Eberhard, S. J., Dingle, S. L., and McDowell, T. D., 1970, Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria, J. Bacteriol. 104:808.

    PubMed  CAS  Google Scholar 

  • Rose, S. P., and Fox, C. F., 1973, The β-glucoside phosphotransferase system of Escherichia coli. III: Properties of a P-HPr β-glucoside phosphotransferase extracted from membranes with detergents, J. Supramol. Struct. 1:565.

    Article  PubMed  CAS  Google Scholar 

  • Roseman, S., 1972, Carbohydrate transport in bacterial cells, in: Metabolic Pathways, Vol. VI, Metabolic Transport (L. E. Hokin, ed.), p. 41, Academic Press, New York.

    Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1971, Regulation of enzyme induction by a bacterial phosphotransferase system, Fed. Proc. 30:1097.

    Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1972, Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 247:972.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245:5870.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Feucht, B. U., and Roseman, S., 1971, Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria, J. Biol. Chem. 246:7819.

    PubMed  CAS  Google Scholar 

  • Schaghter, H., 1973, On the interaction of Michaelis constants for transport, J. Biol. Chem. 248:974.

    Google Scholar 

  • Schaefler, S. J., 1967, Inducible systems for the utilization of β-glucosides, J. Bacteriol. 93:254.

    PubMed  CAS  Google Scholar 

  • Schrecker, O., and Hengstenberg, W., 1971, Purification of the lactose-specific factor III of the staphylococcal phosphoenolpyruvate-dependent phosphotransferase system, FEBS Lett. 13:209.

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., and Roseman, S., 1973, Sugar transport. VII: Lactose transport in Staphylococcus aureus, J. Biol. Chem. 248:966.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E., and Roseman, S., 1967, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Natl. Acad. Sci. U.S.A. 58:1963.

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., Smith, M., and Roseman, S., 1968, Resolution of a staphylococcal phosphotransferase system into four protein components and its relation to sugar transport, Biochem. Biophys. Res. Commun. 31:804.

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973a, Sugar transport. IV: Isolation and characterization of a lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973b, Sugar transport. VI: Phos-phoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957.

    PubMed  CAS  Google Scholar 

  • Sobel, M. E., and Krulwich, T. A., 1973, Metabolism of D-fructose in Arthrobacter pyridinolis, J. Bacteriol. 113:907.

    PubMed  CAS  Google Scholar 

  • Stein, R., Schrecker, O., Lauppe, W. F., and Hengstenberg, W., 1974, The staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: Demonstration of a phosphor-ylated intermediate of the enzyme I component, FEBS Lett. 42:98.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, F., Fukunishi, K., and Takeda, Y., 1969, Studies on ATP citrate lyase of rat liver. V. The binding site of phosphate, J. Biochem (Tokyo) 66:767.

    CAS  Google Scholar 

  • Tanaka, S., and Lin, E. C. C., 1967, Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 57:913.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Fraenkel, D. G., and Lin, E. C. C., 1967a, The enzymatic lesion of strain MM6, a pleiotropic carbohydrate-negative mutant, Biochem. Biophys. Res. Commun. 27:63.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Lerner, S. A., and Lin, E. C. C., 1967b, Replacement of a phosphoenolpyruvate-dependent phosphotransferase system by a nicotinamide-adenine dinucleotide linked dehydrogenase for the utilization of mannitol, J. Bacteriol. 93:642.

    PubMed  CAS  Google Scholar 

  • Walter, R. W., and Anderson, R. L., 1973, Evidence that the inducible phosphoenolpyruvate: D-fructose-1-phosphotransferase system of Aerobacter aerogenes does not require HPr, Biochem. Biophys. Res. Commun. 52:93.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, N., and Powers, D. A., 1975, Studies on the primary structure of a phosphocarrier protein of the bacterial phosphotransferase system, Fed. Proc. 34:491.

    Google Scholar 

  • Weiser, M. M., and Isselbacher, K. J., 1970, Phosphoenolpyruvate activated phosphorylation of sugars by intestinal mucosa, Biochim. Biophys. Acta 208:349.

    Article  PubMed  CAS  Google Scholar 

  • White, R. J., 1969, The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-glucosamine in Escherichia coli, Biochem. J. 118:89.

    Google Scholar 

  • Wolfson, E. B., and Krulwigh, T. A., 1974, Requirement for a functional respiration-coupled transport system for the induction of phosphoenolpyruvate: D-fructose phosphotransferase activity in Arthrob acter pyridinolis, Proc. Natl. Acad. Sci. U.S.A. 71:1739.

    Article  PubMed  CAS  Google Scholar 

  • Yoda, A., Kahlenberg, A., Galsworthy, P. R., Dulak, N. C. N., and Hokin, L. E., 1967, The synthesis of reagent quantities of [2,3-3H]N-(n-propyl)hydroxylamine of high specific activity for derivatizing trace amounts of acylphosphates, Biochemistry 6:1886.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Kundig, W. (1976). The Bacterial Phosphoenolpyruvate Phosphotransferase System. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics