Skip to main content

Small Intestinal Disaccharidases: Their Properties and Role as Sugar Translocators across Natural and Artificial Membranes

  • Chapter
The Enzymes of Biological Membranes

Abstract

This chapter will first review our general knowledge about small intestinal oligo- and disaccharidases and then will cover in more detail what is known about the structure and catalytic mechanism of two of them, i.e., the sucrase-isomaltase complex. Finally, the role of sucrase-isomaltase as group translocator across natural and artificial membranes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers, D. H., 1969, Separation and isolation of rat and human intestinal β-galactosidases, J. Biol. Chem. 244:1238–1246.

    PubMed  CAS  Google Scholar 

  • Alpers, D. H., and Isselbacher, K. J., 1970, Disaccharidase deficiency, Adv. Metabol Disord. 4:76–122.

    Google Scholar 

  • Asp, N. G., and Dahlqvist, A., 1974, Intestinal β-galactosidases in adult low lactase activity and in congenital lactase deficiency, Enzyme 18:84–102.

    PubMed  CAS  Google Scholar 

  • Auricchio, S., Rubino, A., Landolt, M., Semenza, G., and Prader, A., 1963, Isolated intestinal lactase deficiency in the adult, Lancet 2:324–326.

    PubMed  CAS  Google Scholar 

  • Auricchio, S., Rubino, A., Prader, A., Rey, J., Jos, J., Frézal, J., and Davidson, M., 1965a, Intestinal glycosidase activities in congenital malabsorption of disaccharides, J. Pediatr. 66:555–564.

    PubMed  CAS  Google Scholar 

  • Auricchio, S., Semenza, G., and Rubino, A., 1965b, Multiplicity of human intestinal disacchari-dases. II. Characterisation of the individual maltases, Biochim. Biophys. Acta 96:498–507.

    PubMed  CAS  Google Scholar 

  • Barnett, J. E. G., Jarvis, W. T. S., and Munday, K. A., 1967, Enzymic hydrolysis of the carbon-fluorine bond of α-D-glucosyl fluoride by rat intestinal mucosa. Localization of intestinal sucrase, Biochem. J. 103:699–704.

    PubMed  CAS  Google Scholar 

  • Birch, G. C., 1963, Trehaloses, Adv. Carbohydr. Chem. 18:201–225.

    PubMed  CAS  Google Scholar 

  • Birkenmeier, E., and Alpers, D. H., 1974, Enzymatic properties of rat lactase-phlorizin hydrolase, Biochim. Biophys. Acta 350:100–112.

    PubMed  CAS  Google Scholar 

  • Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. G., and Sarma, V. R., 1967, Crystallographic studies of the activity of hen cgg-white lysozyme, Proc. Roy. Soc. London, Ser. B 167:378–388.

    CAS  Google Scholar 

  • Braun, H., 1976, Funktionelle Gruppen an der aktiven Stellen des Saccharase-Isomaltase Komplexes—eines Zuckertranslokators aus der Bürstensaummembran von Enterozyten, Dissertation, ETH-Zürich.

    Google Scholar 

  • Braun, H., Cogoli, A., and Semenza, G., 1975, Dissociation of small-intestinal sucrase-isomaltase complex into enzymatically active subunits, Eur. J. Biochem. 52:475–480.

    PubMed  CAS  Google Scholar 

  • Bretsgher, M., 1973, Membrane structure, some general principles, Science 181:622–629.

    Google Scholar 

  • Caldwell, M. L., and Adams, M. 1950, Action of certain α-amylases, Adv. Carbohydr. Chem. 5:229–268.

    PubMed  CAS  Google Scholar 

  • Capon, B., 1969, Mechanisms in carbohydrate chemistry, Chem. Rev. 69:407–498.

    CAS  Google Scholar 

  • Capon, B., Smith, M. C., Anderson, E., Dahm, R. H., and Sankey, G. H., 1969, Intramolecular catalysis in the hydrolysis of glycosides and acetals, J. Chem. Soc. Ser. B 1038-1047.

    Google Scholar 

  • Carnie, J. A., and Porteous, J. W., 1962, The solubilization, thermolability, chromatographic purification and intracellular distribution of some glycosidases of rabbit small intestine, Biochem. J. 85:620–629.

    PubMed  CAS  Google Scholar 

  • Chipman, D. M., and Sharon, N., 1969, Mechanism of lysozyme action, Science 165:454–465.

    PubMed  CAS  Google Scholar 

  • Cleland, W. W., 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products, Biochim. Biophys. Acta 67:104–137.

    PubMed  CAS  Google Scholar 

  • Cogoli, A., and Semenza, G., 1975, A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase, J. Biol. Chem. 250:7802–7809.

    PubMed  CAS  Google Scholar 

  • Cogoli, A., Mosimann, H., Vogk, C., v. Balthazar, A. K., and Semenza, G., 1972, A simplified procedure for the isolation of the sucrase-isomaltase complex from rabbit intestine, Eur. J. Biochem. 30:7–14.

    PubMed  CAS  Google Scholar 

  • Cogoli, A., Eberle, A., Sigrist H., Joss, Ch., Robinson, E., Mosimann, H., and Semenza, G., 1973, Subunits of the small intestine sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety, Eur. J. Biochem. 33:40–48.

    PubMed  CAS  Google Scholar 

  • Colombo, V., Lorenz-Meyer, H., and Semenza, G., 1973, Small intestinal phlorizin-hydrolase: The “β-glucosidase complex”, Biochim. Biophys. Acta 327:412–424.

    PubMed  CAS  Google Scholar 

  • Conklin, K. A., Yamashiro, K. M., and Gray, G. M., 1975, Human intestinal sucrase-isomaltase. Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits, J. Biol. Chem., 250:5735–5741.

    PubMed  CAS  Google Scholar 

  • Courtois, J. E., 1968, Les disaccharidases, in: Problèmes Actuels de Biochemie Appliquée, 2nd edition (M. L. Girard, ed.), pp. 107–151, Masson, Paris.

    Google Scholar 

  • Crane, R. K., 1962, Hypothesis for mechanism of intestinal active transport of sugars, Fed. Proc. 21:891–895.

    PubMed  CAS  Google Scholar 

  • Crane, R. K., 1965, Na +-dependent transport in the intestine and other animal tissues, Fed. Proc. 24:1000–1006.

    PubMed  CAS  Google Scholar 

  • Crane, R. K., 1970, Organization der digestiv-absorptiven Funktion an der Membran des Bürstensaums, in: Biochemische und Klinische Aspekte der Zuckerabsorption (K. Rommel and P. H. Clodi, eds.), pp. 75–83, F. K. Schattauer-Verlag, Stuttgart.

    Google Scholar 

  • Critchley, D. R., Howell, K. E., and Eichholz, A., 1975, Solubilization of brush borders of hamster small intestine and fractionation of some of the components, Biochim. Biophys. Acta 394:361–376.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., Lockwood, D. H., and Caldwell, J. R., 1965, Lactase deficiency in the adult: A common occurrence, Lancet 1:14–18.

    PubMed  CAS  Google Scholar 

  • Dahlquist, F. W., Rand-Meir, T., and Raftery, M. A., 1968, Demonstration of a carbonium ion intermediate during lysozyme catalysis, Proc. Natl. Acad. Sci. U.S.A. 61:1194–1198.

    PubMed  CAS  Google Scholar 

  • Dahlqvist, A., 1960a, Characterisation of hog intestinal invertase as glucosido-invertase. III. Specificity of purified invertase, Acta Chem. Scand. 14:63–71.

    CAS  Google Scholar 

  • Dahlqvist, A., 1960b, Characterisation of hog intestinal trehalase, Acta Chem. Scand. 14:9–16.

    CAS  Google Scholar 

  • Dahlqvist, A., 1963, Rat-intestinal dextranase. Localization and relation to the other carbohy-drases of the digestive tract, Biochem. J. 86:72–76.

    PubMed  CAS  Google Scholar 

  • Dahlqvist, A., 1964, Disorders due to intestinal defective carbohydrate digestion and absorption, in: Il Pensiero Scientifico (P. Durand ed.), p. 5, Rome, Italy.

    Google Scholar 

  • Dahlqvist, A., and Lindberg, T., 1966, Development of the intestinal disaccharidase and alkaline phosphatase activities in the human foetus, Clin. Sci. 30:517–528.

    PubMed  CAS  Google Scholar 

  • Dahlqvist, A., and Thompson, D. L., 1963, Separation and characterization of two rat-intestinal amylases, Biochem. J. 89:272–277.

    PubMed  CAS  Google Scholar 

  • Dahlqvist, A., Hammond, J. B., Crane, R. K., Dunphy, J. V., and Littman, A., 1963, Intestinal lactase deficiency and lactose intolerance in adults: preliminary report, Gastroenterology 45:488–491.

    PubMed  CAS  Google Scholar 

  • De Laey, P., 1966, Die Membranverdauung der Stärke. 3. Mitt, der Einfluss von alimentären Komponenten des Chymus auf die Membranverdauung der Stärke, Die Nahrung 10:655–663.

    Google Scholar 

  • Dubs, R., Steinmann, B., and Gitzelmann, R., 1973, Demonstration of an inactive enzyme antigen in sucrase-isomaltase deficiency, Helv. Paediatr. Acta 28:187–198.

    PubMed  CAS  Google Scholar 

  • Dubs, R., Gitzelmann, R., Steinmann, B., and Lindenmann, J., 1975, Catalytically inactive sucrase antigen of rabbit small intestine: The enzyme precursor, Helv. Paediotr. Acta 30:89–102.

    CAS  Google Scholar 

  • Dunlap, R. B., Ghanim, G. A., and Cordes, E. H., 1969, Secondary valence force catalysis. IX. Catalysis of hydrolysis of para substituted benzaldehyde diethyl acetals by sodium dodecyl sulfate, J. Phys. Chem. 73:1898–1901.

    CAS  Google Scholar 

  • Dunn, B. M., and Bruige, T. C., 1970, Further investigation on the neighboring carboxyl group catalysis of hydrolysis of methyl phenyl acetals of formaldehyde. Electrostatic and solvent effects, J. Am. Chem. Soc. 92:6589–6594.

    Google Scholar 

  • Dunn, B. M., and Bruice, T. G., 1971, Electrostatic catalysis. IV. Intramolecular carboxyl group electrostatic facilitation of the A-l-catalyzed hydrolysis of alkyl phenyl acetals of formaldehyde. The influence of oxocarbonium ion stability, J. Am. Chem. Soc. 93:5725–5731.

    CAS  Google Scholar 

  • Eichloz, A., and Crane, R. K., 1965, Studies on the organization of the brush border in intestinal epithelial cells. 1. Tris disruption of isolated hamster brush borders and density gradient separation of fractions, J. Cell Biol. 26:687–692.

    Google Scholar 

  • Elworthy, P. H., and McIntosh, D. S., 1964, The interaction of water with lecithin micelles in benzene, J. Phys. Chem. 68:3448–3452.

    CAS  Google Scholar 

  • Flückiger, R., 1973, Untersuchungen uber den Reaktionsmechanismus der Isomalt ose, Diplomarbeit, ETH-Zürich.

    Google Scholar 

  • Forstner, G. G., Tanaka, K. and Isselbacher, K. J., 1968, Lipid composition of the isolated rat intestinal microvillus membrane, Biochem. J. 109:51–59.

    PubMed  CAS  Google Scholar 

  • Gitler, C., and Montal, M., 1972, Formation of decane-soluble proteolipids: influence of monovalent and divalent cations, FEBS Lett. 28:329–332.

    PubMed  CAS  Google Scholar 

  • Gitzelmann, R., BÄchi, Th., Binz, H., Lindenmann, J., and Semenza, G., 1970, Localization of rabbit intestinal sucrase with ferritin-antibody conjugates, Biochim. Biophys. Acta 196:20–28.

    PubMed  CAS  Google Scholar 

  • Halevi, E. A., 1963, Secondary isotope effects, Progr. Phys. Organ. Chem. 1:109–221.

    CAS  Google Scholar 

  • Hall, A. N., Hollingshead, S., and Rydon, H. N., 1961, The acid and alkaline hydrolysis of some substituted phenyl-α-D-glucosides, J. Chem. Soc. pp. 4290-4294.

    Google Scholar 

  • Hamilton, J. D., and McMichael, H. B., 1968, Role of the microvillus in the absorption of disaccha-rides, Lancet 2:154–157.

    PubMed  CAS  Google Scholar 

  • Hanke, D. W., and Diedrigh, D. F., 1974, Fate of the hydrolyzed glucose moiety from phlorizin in hamster jejunum, Fed. Proc. 33:271.

    Google Scholar 

  • Holzel, A., Schwarz, V., and Sutgliffe, K. W., 1959, Defective lactose absorption causing malnutrition in infancy, Lancet, 1:1126–1128.

    PubMed  CAS  Google Scholar 

  • Honegger, P., and Gershon, E., 1974, Further evidence for the multiplicity of carriers for free glucalogues in hamster small intestine, Biochim. Biophys. Acta 352:127–134.

    PubMed  CAS  Google Scholar 

  • Honegger, P., and Semenza, G., 1972, Multiplicity of carriers for free glucalogues in hamster small intestine, Biochim. Biophys. Acta 318:390–410.

    Google Scholar 

  • Hopfer, LI., Nelson, K., Perrotto, J., and Isselbacher, K. J., 1973, Glucose transport in isolated brush border membrane from rat small intestine, J. Biol. Chem. 10:25–32.

    Google Scholar 

  • Imoto, T., Johnson, L. N., North, A. T. G., Phillips, D. C., and Rupley, J. A., 1972, Vertebrate lysozymes, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. VII, pp. 665–868, Academic Press, New York.

    Google Scholar 

  • Janett, M., 1974, Identifikation der durch Saccharose und Isomaltase gespaltenen Bindung im Susstrat. Steady-State Kinetik der Isomaltase, Diplomarbeit, ETH-Zürich.

    Google Scholar 

  • Jesuitova, N. N., De Laey, P., and Ugolev, A. M., 1964, Digestion of starch in vivo and in vitro in a rat intestine, Biochim Biophys. Acta 86:205–210.

    PubMed  CAS  Google Scholar 

  • Johnson, C. F., 1967, Disaccharidase: Localization in hamster intestine brush borders, Science 155:1670–1672.

    PubMed  CAS  Google Scholar 

  • Kayser, S. G., and Patton, S., 1965, The function of very long chain fatty acids in membrane structure: Evidence from milk cerebrosides, Biochim. Biophys. Res. Commun. 41:1572–1578.

    Google Scholar 

  • Kelly, J. K., and Alpers, D. H., 1973a, Properties of human intestinal glucoamylase, Biochim. Biophys. Acta 315:113–120.

    PubMed  CAS  Google Scholar 

  • Kelly, J. K., and Alpers, D. H., 1973a, Blood group antigenicity of purified human intestinal disaccharidases, J. Biol. Chem. 248:8216–8221.

    PubMed  CAS  Google Scholar 

  • Kerry, K. R., and Townley, R. R. W., 1965, Genetic aspects of intestinal sucrase-isomaltase deficiency, Aust. Paediatr. J. 1:223–235.

    Google Scholar 

  • Knüsel, A., BÄchi, Th., Gitzelmann, R., and Lindenmann, J., 1971, Electron microscopic recognition of surface antigen by direct reaction and ferritin capture with guinea pig hybrid antibody, J. Immunol. 106:583–585.

    PubMed  Google Scholar 

  • Kolínská, J., and Semenza, G., 1967, Studies on intestinal sucrase and on intestinal sugar transport. V. Isolation and properties of sucrase-isomaltase from rabbit small intestine, Biochim. Biophys. Acta 146:181–195.

    PubMed  Google Scholar 

  • Kraml, J., Kolinska, J., Ellederov¡, D., and Hiršová, D., 1972, β-Glucosidase (phlorizin hydrolase) activity of the lactase fraction isolated from the small intestinal mucosa of infant rats, and the relationship between glucosidases and β-galactosidase, Biochim. Biophys. Acta 258:520–530.

    PubMed  CAS  Google Scholar 

  • Kretchmer, N., 1971, Memorial Lecture. Lactose and lactase—historical perspective, Gastroenterology 61:805–813.

    PubMed  CAS  Google Scholar 

  • Larner, J., 1955, Hydrolysis of isomaltotriose by oligo-1, 6-α-glucosidase, J. Am. Chem. Soc. 77:6385–6386.

    CAS  Google Scholar 

  • Larner, J. and McNickle, C. M., 1954, Action of intestinal extracts on “branched” oligosaccharides, J. Am. Chem. Soc. 76:4747–4748.

    CAS  Google Scholar 

  • Larner, J., and McNickle, C. M., 1955, Gastrointestinal digestion of starch. I. The action of oligo-1, 6-glucosidase on branched saccharides, J. Biol. Chem. 215:723–736.

    PubMed  CAS  Google Scholar 

  • LÄuger, P., Lesslauer, W., Marti, E., and Richter, J., 1967, Electrical properties of bimolecular phospholipid membranes, Biochim. Biophys. Acta 135:20–32.

    PubMed  Google Scholar 

  • Leese, H. J., and Semenza, F., 1973, On the identity between the small intestinal enzymes phlorizin-hydrolase and glycosylceramidase, J. Biol. Chem. 248:8170.

    PubMed  CAS  Google Scholar 

  • Lemieux, R. U., and Huber, G., 1955, The solvolysis of alpha-and beta-3,4,6-tri-O-acetyl-D-gluco-pyranosyl chlorides, Can. J. Chem. 33:128–133.

    CAS  Google Scholar 

  • Loew, G. H., and Thomas, D. D., 1972, Molecular orbital calculations of the catalytic effect of lysozyme. 1. Glu 35 as general acid catalyst, J. Theor. Biol. 36:89–104.

    PubMed  CAS  Google Scholar 

  • Lojda, Z., 1972, An improved histochemical method for the demonstration of disaccharidases with natural substrates, Histochemie 30:277–280.

    PubMed  CAS  Google Scholar 

  • Lojda, Z., Slaby, J., Kraml, J., and Koínská, J., 1973, Synthetic substrates in the histochemical demonstration of intestinal disaccharidases, Histochemie 34:361–369.

    PubMed  CAS  Google Scholar 

  • Lorenz-Meyer, H., Blum, A. L., Haemmerli, H. P., and Semenza, G., 1972, A second enzyme defect in acquired lactase deficiency: Lack of small intestinal phlorizin-hydrolase, Eur. J. Clin. Invest. 2:326–331.

    PubMed  CAS  Google Scholar 

  • Louvard, D., Maroux, S., Baratti, J., Desnuelle, P., and Mutaftschiev, S., 1973, On the preparation and some properties of closed membrane vesicles from hog duodenal and jejunal brush border, Biochim. Biophys. Acta 291:747–763.

    PubMed  CAS  Google Scholar 

  • Louvard, D., Maroux, S., Vannier, Ch., and Desnuelle, P., 1975, Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100, Biochim. Biophys. Acta 375:236–248.

    CAS  Google Scholar 

  • Madžarovová-Nohejlová, J., 1973, Trehalose malabsorption in a family, Gastroenterology, 65:130–133.

    PubMed  Google Scholar 

  • Malathi, P., and Crane, K. R., 1969, Phlorizin hydrolase: a x03B2;-glucosidase of hamster intestinal brush border membrane, Biochim. Biophys. Acta 173:245–256.

    PubMed  CAS  Google Scholar 

  • Malathi, P., Ramaswamy, K., Caspary, W. F., and Crane, R. K., 1973, Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system, Biochim. Biophys. Acta 307:613–626.

    PubMed  CAS  Google Scholar 

  • McGeachin, R. L., and Ford, N. K., 1959, Distribution of amylase in the gastrointestinal tract of the rat, Am. J. Physiol. 196:972–974.

    PubMed  CAS  Google Scholar 

  • McGeachin, R. L., Gleason, J. R., and Adams, M. R., 1958, Amylase distribution in extrapan-creatic, extrasalivary tissues, Arch. Biochem. Biophys. 75:403–411.

    PubMed  CAS  Google Scholar 

  • Messer, M., and Kerry, K. R., 1967, Intestinal digestion of maltotriose in man, Biochim. Biophys. Acta 132:432–443.

    PubMed  CAS  Google Scholar 

  • Miller, D., and Crane, R. K., 1961, The digestive function of the epithelium of the small intestine. 1. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis, Biochim. Biophys. Acta 52:281–293.

    PubMed  CAS  Google Scholar 

  • Millington, P. F., and Critchley, D. R., 1968, Lipid composition of the brush borders of rat intestinal epithelial cells, Life Sci. 7:839–845.

    CAS  Google Scholar 

  • Mosimann, H., Semenza, G., and Sund, H., 1973, Hydrodynamic properties of the sucrase-isomaltase complex from rabbit small intestine, Eur. J. Biochem. 36:489–494.

    PubMed  CAS  Google Scholar 

  • Müller, P., Rudin, D. O., Ti Tien, H., and Westcott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.

    Google Scholar 

  • Murer, H., and Hopfer, U., 1974, Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes, Proc. Natl. Acad. Sci. U.S.A. 71:484–488.

    PubMed  CAS  Google Scholar 

  • Myrbäck, K., 1949, Trehalose and trehalase, Ergeh. Enzymforsch. 10:168–190.

    Google Scholar 

  • Nicolson, G., and Singer, S. J., 1972, Electron microscopic localization of macromolecules on membrane surfaces, Ann. N.Y. Acad. Sci. 195:368–375.

    PubMed  CAS  Google Scholar 

  • Nishi, Y., Yoshida, O., and Takesue, Y., 1968, Electron microscope studies on the structure of rabbit intestinal sucrase, J. Mol. Biol. 37:441–444.

    PubMed  CAS  Google Scholar 

  • Oda, T., and Seki, S., 1966, Molecular basis of structure and function of the plasma membrane of the microvilli of intestinal epithelial cells, Int. Congr. Electron Microscopy, 6th, Kyoto, pp. 387-388 (abstract).

    Google Scholar 

  • Overton, J., Eicholz, A., and Crane, R. K., 1965, Studies on the organization of the brush border in intestinal epithelial cells. II. Fine structure of fractions of Tris-disrupted hamster brush borders, J. Cell Biol. 26:693–706.

    PubMed  CAS  Google Scholar 

  • Parsons, D. S., and Pritchard, J. S., 1965, Hydrolysis of disaccharides during absorption by the perfused small intestine of amphibia, Nature 208:1097–1098.

    PubMed  CAS  Google Scholar 

  • Quaroni, A., and Semenza, G., 1976, Partial amino acid sequences around the essential carboxylate in the active sites of intestinal sucrase and isomaltase, J. Biol. Chem. 251: in press.

    Google Scholar 

  • Quaroni, A., Gershon, E., and Semenza, A., 1974, Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine, J. Biol. Chem. 249:6424–6433.

    PubMed  CAS  Google Scholar 

  • Quaroni, A., Gershon-Quaroni, E., and Semenza, G., 1975, Tryptic digestion of native small intestinal sucrase-isomaltase complex: Isolation of the sucrase subunit, Eur. J. Biochem. 52:481–486.

    PubMed  CAS  Google Scholar 

  • Ramaswamy, S., and Radhakrishnan, A. N., 1975, Lactase-phlorizin hydrolase complex from monkey small intestine: Purification, properties and evidence for two catalytic sites, Biochim. Biophys. Acta, submitted.

    Google Scholar 

  • Ramaswamy, K., Malathi, P., Caspary, W. F., and Crane, R. K., 1974, Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system, Biochim. Biophys. Acta 345:39–48.

    PubMed  CAS  Google Scholar 

  • Richards, J. H., 1970, Kinetic isotope effects in enzymic reactions, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. II, pp. 321–333, Academic Press, New York.

    Google Scholar 

  • Robyt, J. F., and French, D., 1970, Multiple attack and polarity of action of porcine pancreatic α-amylase, Arch. Biochem. Biophys. 138:662–670.

    PubMed  CAS  Google Scholar 

  • Rubino, A., Zimbalatti, F., and Auricchio, S., 1964, Intestinal disaccharidase activities in adult and suckling rats, Biochim. Biophys. Acta 92:305–311.

    PubMed  CAS  Google Scholar 

  • Ruttloff, H., Friese, R., and Täufel, K., 1967, Zur Bestimmung der intestinalen Amylase, Die Nahrung 11:206–213.

    Google Scholar 

  • Sasajima, K., Kawachi, T., Sato, S., and Sugimura, T., 1975, Purification and properties of α,α-trehalase from the mucosa of rat small intestine, Biochim. Biophys. Acta 403:139–146.

    PubMed  CAS  Google Scholar 

  • Schlegel-Hauter, S., Hore, P., Kerry, K. R., and Semenza, G., 1972, The preparation of lactase and glucoamylase of rat small intestine, Biochim. Biophys. Acta 258:506–519.

    Google Scholar 

  • Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B. K., Cerda, J. J., and Crane, R. K., 1973, Purification of the human intestinal brush border membrane, Biochim. Biophys. Acta 323:98–112.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., Kahane, I., Jackson, R. L., and Marchesi, V., 1972, Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure, Arch. Biochem. Biophys. 155:167–183.

    Google Scholar 

  • Semenza, G., 1968, Intestinal oligosaccharidases and disaccharidases, in: Handbook of Physiology (C. F. Code, J. R. Brobeck, R. K. Crane, H. W. Davenport, M. I. Grossman, H. D. Janowitz, C. L. Prosser, and T. H. Wilson, eds.), Vol. V, pp. 2543–2566, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Semenza, G., 1969, A kinetic investigation on the allosteric effects in intestinal sucrase, Eur. J. Biochem. 8:518–529.

    PubMed  CAS  Google Scholar 

  • Semenza, G., and Balthazar, A. K., 1974, Steady-state kinetics of rabbit-intestinal sucrase, Eur. J. Biochem. 41:149–162.

    PubMed  CAS  Google Scholar 

  • Semenza, G., and Řihova, L., 1969, Allosteric effects and phlorizin inhibition of intestinal trehalase, Biochim. Biophys. Acta 178:393–396.

    PubMed  CAS  Google Scholar 

  • Semenza, G., Auricchio, S., Rubino, A., Prader, A., and Welsh, J. D., 1965, Lack of some intestinal maltases in a human disease transmitted by a single genetic factor, Biochim. Biophys. Acta 195:386–389.

    Google Scholar 

  • Semenza, G., Curtius, C.-H., Kolinska, J., and Müller, M., 1967, Studies on intestinal sucrase and intestinal sugar transport. VI. Liberation of α-glucose by sucrase and isomaltase from the glycone moiety of the substrates, Biochim. Biophys. Acta 146:196–204.

    PubMed  CAS  Google Scholar 

  • Semenza, G., Curtius, H. Ch., Raunhardt, O., Hore, P., and Müller, M., 1969, The configurations at the anomeric carbon of the reaction products of some digestive carbohydrases, Carbohydr. Res. 10:417–428.

    CAS  Google Scholar 

  • Semenza, G., Cogoli, A., Quaroni, A., and Vögeli, H., 1974, The sucrase-isomaltase complex from small intestine: A possible hydrolytic mechanism and indications on its role in the membrane transport of some sugars. Invited lecture at the Symposium on “Biomembranes: Structures and Function” at the 9th FEBS Meeting, Budapest, Aug. 25-30, 1974, pp. 131-144.

    Google Scholar 

  • Sigrist, H., Ronner, P., and Semenza, G., 1975, A hydrophobic form of the small-intestinal sucrase-isomaltase complex, Biochim. Biophys. Acta 406:433–446.

    PubMed  CAS  Google Scholar 

  • Sigrist-Nelson, K., and Hopfer, U., 1974, A distinct fructose transport system in isolated brush border membrane, Biochim. Biophys. Acta 367:247–254.

    PubMed  CAS  Google Scholar 

  • Sinnott, M. L., and Souchard, I. J. L., 1973, The mechanism of action of β-galactosidase, Biochem. J. 133:89–98.

    PubMed  CAS  Google Scholar 

  • Smith, L. E. H., Mohr, L. H., and Raftery, M. A., 1973, Mechanism for lysozyme-catalyzed hydrolysis, J. Am. Chem. Soc. 95:7497–7500.

    PubMed  CAS  Google Scholar 

  • Spatz, L., and Strittmatter, P., 1973, A form of reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane binding segment, J. Biol. Chem. 248:793–799.

    PubMed  CAS  Google Scholar 

  • Stanek, E., 1974, Stopped-Flow-Kinetic mit Saccharose, Diplomarbeit, ETH-Zürich.

    Google Scholar 

  • Stefani, A., Janett, M., and Semenza, G., 1975, Small intestinal sucrase and isomaltase split the bond between glucosyl-Ci and the glycosyl oxygen, J. Biol. Chem., 250:7810–7813.

    PubMed  CAS  Google Scholar 

  • Storelli, C., Vögeli, H., and Semenza, G., 1972, Reconstitution of a sucrase-mediated sugar transport system in lipid membranes, FEBS Lett. 24:287–292.

    PubMed  CAS  Google Scholar 

  • Storelli, C., Kessler, M., Müller, M., Murer, H., and Semenza, G., 1976, in preparation.

    Google Scholar 

  • Swaminathan, N., and Radhakrishnan, A. N., 1969, Studies on intestinal disaccharidases: Part III—Purification and properties of two lactase fractions from monkey small intestine, Indian J. Biochem. 6:101–105.

    CAS  Google Scholar 

  • Takesue, Y., Yoshida, T. O., Akaza, T., and Nishi, Y., 1973, Localisation of sucrase in the microvillous membrane of rabbit intestinal mucosal cells, J. Biochem. (Japan) 74:415–423.

    CAS  Google Scholar 

  • Ugolev, A. M., 1965, Membrane (contact) digestion, Physiol. Rev. 45:555–595.

    PubMed  CAS  Google Scholar 

  • Veibel, S., 1950, in: The Enzymes (J. Summer and K. Myrbäck, eds.), Vol. I, pp. 583–620, Academic Press, New York.

    Google Scholar 

  • Vogeli, H., 1975, Rekonstitution eines Saccharose-abhängigen Zuckertransportsysternes in künstlichen Lipid-Membranen, Dissertation, ETH-Zürich.

    Google Scholar 

  • Vogeli, H., Brunner, J., and Semenza, C., 1976, Reconstitution of the sucrase-mediated sugar transport system in liposomes, to be submitted.

    Google Scholar 

  • Wallenfels, K., and Fischer, J., 1960, Untersuchungen über milchzuckérsplatende Enzyme. X. Die Lactase des Kälberdarms, Z. Physiol. Chem. 321:223–245.

    CAS  Google Scholar 

  • Wallenfels, K., and Weil, R., 1972, β-Galactosidase, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. VII, pp. 617–663, Academic Press, New York.

    Google Scholar 

  • Whelan, W. J., 1958, Starch and similar polysaccharides, Encyclopedia of Plant Physiology, Vol. 6, pp. 154–240.

    Google Scholar 

  • Wood, R. E., Wirth, F. P., Jr., and Morgan, H. E., 1968, Glucose permeability of lipid bilayer membranes, Biochim. Biophys. Acta 163:171–178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Semenza, G. (1976). Small Intestinal Disaccharidases: Their Properties and Role as Sugar Translocators across Natural and Artificial Membranes. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics