Skip to main content

The (Sodium plus Potassium)-Transport ATPase

  • Chapter
The Enzymes of Biological Membranes

Abstract

The (Na+ + K+) ATPase (EC 3.6.1.3) is the enzymatic expression of the principal active cation-transport system in eucaryotic cells. In a number of tissues—brain, electric organ, kidney, salt glands, etc.—it constitutes the main mechanism for producing physiological work. Thus the mechanism of this enzyme is of great interest both in terms of cell physiology and molecular biology. The questions of most fundamental interest relate to (1) how the free energy of hydrolysis of ATP is channeled into vectorial work, (2) the molecular structure of the ionophoric mechanism, and (3) how the active transport mechanism is regulated to conform to the requirements of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, R. W., 1967, Biochemical aspects of active transport, Annu. Rev. Biochem. 36:727.

    Article  PubMed  CAS  Google Scholar 

  • Albers, R. W., and Koval, G. J., 1973, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. VIII. Monovalent cation sites regulating phosphatase activity, J. Biol. Chem. 248:777.

    PubMed  CAS  Google Scholar 

  • Albers, R. W., Koval, G. J., and Siegel, G. J., 1968, Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase, Mol. Pharmacol. 4:324.

    PubMed  CAS  Google Scholar 

  • Albers, R. W., Koval, G. J., and Swann, A. C., 1974, Analysis of Na +, K +, and nucleotide interactions in terms of a heterotropic relaxation model for (Na++K +)-ATPase, Ann. N.Y. Acad. sci. 242:268.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, in: Progress in Biophysics and Molecular Biology (J. Butler and D. Noble, eds.), Vol. 24, pp. 177–223, Pergamon Press, New York.

    Google Scholar 

  • Baker, P. F., and Stone, A. J., 1966, A kinetic method for investigating hypothetical models of the sodium pump, Biochim. Biophys. Acta 126:321.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, J., 1902, Untersuchungen zur Thermodynamik der bioelektrischen Ströme, Pfluegers Arch. Gesamte Physiol. Menschen Tiere, 92:521.

    Article  CAS  Google Scholar 

  • Boardman, L., Huett, M., Lamb, J. F., Newton, J. P., and Polson J. M., 1974, Evidence for the genetic control of the sodium pump density in HeLa cells, J. Physiol. 241:771.

    PubMed  CAS  Google Scholar 

  • Bogdanski, D. F., and Brodie, B. B., 1969, The effects of inorganic ions on the storage and uptake of 3H-norepinephrine by rat heart slices, J. Pharmacol. Exp. Therap. 165:181.

    CAS  Google Scholar 

  • Bonting, S. L., 1970, Sodium-potassium activated adenosinetriphosphatase and cation transport, in: Membranes and Ion Transport (E. Bittar, ed.), Vol. 1, pp. 286–392, Wiley-Interscience, New York.

    Google Scholar 

  • Caldwell, P. C., 1969, Energy relationships and the active transport of ions, Current Top. Bioenerg. 3:251–278.

    CAS  Google Scholar 

  • Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., and Shaw, T. I., 1960, The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152:561.

    PubMed  CAS  Google Scholar 

  • Carpenter, D. O., 1970, Membrane potential produced directly by the Na+ pump in Aplysia neurons, Comp. Biochem. Physiol. 35:371.

    Article  CAS  Google Scholar 

  • Collins, R. C., and Albers, R. W., 1972, The phosphoryl acceptor protein of Na-K-ATPase from various tissue, J. Neurochem. 19:1209

    Article  PubMed  CAS  Google Scholar 

  • Conway, E. J., and Hingerty, D., 1948, Relations between potassium and sodium levels in mammalian muscle and blood plasma, Biochem. J. 42:372.

    CAS  Google Scholar 

  • Dahl, J. L., and Hokin, L. E., 1974, The sodium-potassium adenosinetriphosphatase, Annu. Rev. Biochem. 43:327.

    Article  PubMed  CAS  Google Scholar 

  • De Weer, P., 1970, Effects of intracellular adenosine5′-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium, J. Gen. Physiol. 56:583.

    Article  PubMed  Google Scholar 

  • De Weer, P., 1974, Na +, K+ exchange and Na +, Na+ exchange in the giant axon of the squid, Ann. N.Y. Acad. Sci. 242:434.

    Article  PubMed  Google Scholar 

  • Dixon, J. F., and Hokin, L. E., 1974, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase, Arch. Biochem. Biophys. 163:749.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, I. S., 1974, Thyroid and sodium transport, in: Drugs and Transport Processes (B. A. Calling-ham, ed.), pp. 101–110, Macmillan, London.

    Google Scholar 

  • Epstein, F. H., and Silva, P., 1974, Role of sodium, potassium-ATPase in renal function, Ann. N.Y. Acad. Sci. 242:519.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, F. H., Katz, A. I., and Pickford, G. E., 1967, Sodium-and potassium-activated adenosine triphosphatase of gills: Role in adaptation of teleosts to salt water, Science 156:1245.

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S., Koval, G. J., and Albers, R. W., 1966, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation, J. Biol. Chem. 241:1882.

    PubMed  CAS  Google Scholar 

  • Garay, R. P., and Garrahan, P. J., 1973, The interaction of sodium and potassium with the solid pump in red cells, J. Physiol. 231:297.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Garay, R. P., 1974, A kinetic study of the Na pump in red cells; Its relevance to the mechanism of active transport, Ann. N.Y. Acad. Sci. 242:445.

    Article  PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967a, The sensitivity of the sodium pump to external sodium, J. Physiol. (London) 192:175.

    CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967b, Factors affecting the relative magnitude of the sodium-potassium and sodium-sodium exchanges catalysed by the sodium pump, J. Physiol. (London) 192:189.

    CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967c, The stoichiometry of the sodium pump, J. Physiol. (London) 192:217.

    CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967d, The incorporation of inorganic phosphate into adenosine, triphosphate by reversal of the sodium pump, J. Physiol. (London) 192:237.

    CAS  Google Scholar 

  • Glynn, I. M., and Hoffman, J., 1971, Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells, J. Physiol. (London) 218:239.

    CAS  Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D., 1975, The sodium pump, Anna. Rev. Physiol. 37:13.

    Article  CAS  Google Scholar 

  • Glynn, I. M., Lew, V. L., and Luthi, LI., 1970, Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle, J. Physiol. 207:371.

    PubMed  CAS  Google Scholar 

  • Goldin, S. M., and Tong, S. W., 1974, Reconstitution of active transport catalysed by the purified sodium and potassium ion-stimulated adenosine triphosphatase from canine renal medulla, J. Biol. Chem. 249:5907.

    PubMed  CAS  Google Scholar 

  • Goldman, S., 1975, Cold resistance of the brain during hibernation: Evidence of a lipid adaptation, Am. J. Physiol. 228:834.

    PubMed  CAS  Google Scholar 

  • Grinstein, S., and Erlij, D., 1974, Insulin unmasks latent sodium pump sites in frog muscle, Nature 251:57.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, O., 1972, The relationship between G-strophanthin-binding capacity and ATPase activity in plasma-membrane fragments from ox brain, Biochim. Biophys. Acta. 233:122.

    Google Scholar 

  • Harris, E. J., and Maizels, M., 1951, The permeability of human erythrocytes to sodium, J. Physiol. 113:506.

    PubMed  CAS  Google Scholar 

  • Hegyvary, C., and Post, R. L., 1971, Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase, J. Biol. Chem. 246:5234.

    PubMed  CAS  Google Scholar 

  • Heppel, L. A., 1940, The diffusion of radioactive sodium into the muscles of potassium-depleted rats, Am. J. Physiol. 127:385.

    Google Scholar 

  • Hilden, S., Rhee, H., and Hokin, L. E., 1974, Sodium transport by phospholipid vesicles containing purified sodium and potassium ion-activated adenosine triphosphatase, J. Biol. Chem. 249:7432.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1974, Purification and properties of the (sodium and potassium)-activated adenosine triphosphatase and reconstitution of sodium transport, Ann. N.Y. Acad. Sci. 242:12.

    Article  PubMed  CAS  Google Scholar 

  • Ismail-Beigi, F., and Edelman, I. S., 1970, Mechanism of thyroid calorigenesis: role of active sodium transport, Proc. Natl. Acad. Sci. U.S.A. 67:1071.

    Article  CAS  Google Scholar 

  • Jarnefelt, J., 1972, Lipid requirements of functional membrane structures as indicated by the reversible inactivation of (Na++K +)-ATPase, Biochim. Biophys. Acta 266:91.

    Article  PubMed  CAS  Google Scholar 

  • Jean, D. H., Albers, R. W., and Koval, G. J., 1975, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. X. Immuno-chemical properties of the Lubrol-solubilized enzyme and its constituent polypeptides, J. Biol. Chem. 250:1035.

    PubMed  CAS  Google Scholar 

  • Jensen, J., and Norby, J. G., 1971, On the specificity of the ATP-binding site of (Na++K+-activated ATPase from brain microsomes, Biochim. Biophys. Acta 233:395.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, P. L., 1972, The role of aldosterone in the regulation of (Na++K +)-ATPase in rat kidney, J. Steroid Biochem. 3:181.

    Article  PubMed  Google Scholar 

  • Jørgensen, P. L., 1974a, Purification of (Na++K+)-ATPase: Active site determinations and purity, Ann. N.Y. Acad. Sci. 242:36.

    Article  PubMed  Google Scholar 

  • Jørgensen, P. L., 1974b, Purification and characterization of (Na++K+)-ATPase, Biochim. Biophys. Acta 356:36.

    Article  PubMed  Google Scholar 

  • Kanazawa, T., Saito, M., and Tonomura, Y., 1970, Formation and decomposition of a phos-phorylated intermediate in the reaction of Na+-K +-dependent ATPase, J. Biochem. 67:693.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Glynn, I. M., 1974, An uncoupled efflux of sodium ions from human red cells, probably associated with Na +-dependent ATPase activity, Ann. N.Y. Acad. Sci. 242:261.

    Article  Google Scholar 

  • Knox, W. H., and Sen, A. K., 1974, Mechanism of action of aldosterone with particular reference to (Na++K +)-ATPase, Ann. N.Y. Acad. Sci. 242:471.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., 1971, Purification of the sodium-and potassium-dependent adenosine triphosphatase from canine renal medulla, J. Biol. Chem. 246:4157.

    PubMed  CAS  Google Scholar 

  • Leib, W. R., and Stein, W. D., 1974, Simultaneity, occlusion and the sodium pump, Nature 252:730.

    Article  Google Scholar 

  • Lindenmayer, G. E., and Schwartz, A., 1973, Nature of the transport adenosine triphosphatase complex, J. Biol. Chem. 248:1291.

    PubMed  CAS  Google Scholar 

  • Lindenmayer, G. E., Laughter, A. H., and Schwartz, A., 1968, Incorporation of inorganic phosphate-32 into a Na +, K +-ATPase preparation: Stimulation by ouabain, Arch. Biochim. Biophys. 127:187.

    Article  CAS  Google Scholar 

  • Lindenmayer, G. E., Schwartz, A., and Thompson, H. K., 1974, A kinetic description for (Na++K +)-adenosine triphosphatase, J. Physiol. 236:1.

    PubMed  CAS  Google Scholar 

  • Luly, P., Barnabei, O., and Tria, E., 1972, Hormonal control in vitro of plasma membrane-bound (Na +-F +)-ATPase of rat liver, Biochim. Biophys. Acta 282:447.

    Article  PubMed  CAS  Google Scholar 

  • MÅrdh, S., and Zetterqvist, O., 1974, Phosphorylation and dephosphorylation reactions of bovine brain Na +, K +-stimulated ATP phosphohydrolase by adenosine [32P] triphosphate by a rapid-mixing technique, Biochim. Biophys. Acta 350:473.

    PubMed  Google Scholar 

  • Matty, A. J., and Green, K., 1962, Active sodium transport in response to thyroxine, Life Sci. 1:487.

    Article  PubMed  CAS  Google Scholar 

  • Mullins, L. J., 1972, Active transport of Na+ and K+ across the squid axon membrane, in: Role of Membranes in Secretory Processes (L. Bolis, R. Keynes, and W. Wilbrandt, eds.), pp. 182–202, Elsevier, New York.

    Google Scholar 

  • Nakao, T., Tashima, K., Nagano, K., and Nakao, M., 1965, Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit, Biochem. Biophys. Res. Commun. 19:755.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, M., Nakao, T., Hara, Y., Nagai, F., Yagasaki, S., Koi, M., Nakagawa, A., and Kawai, K., 1974, Purification and properties of (Na++K +)-ATPase from pig brain, Ann. N.Y. Acad. Sci. 242:24.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., and Freed, S., 1971, Dissociation of lipid components and reconstitution at — 75°C of Mg++ dependent, Na+ and K+ stimulated, adenosine triphosphatase in rat brain, Nature 230:148.

    CAS  Google Scholar 

  • Norby, J. G., and Jensen, J., 1971, Binding of ATP to brain microsomal ATPase, Biochim. Biophys. Acta 233:104.

    Article  PubMed  CAS  Google Scholar 

  • Pickford, G. E., Griffith, R. W., Toretti, J., Ernesto, H., and Epstein, F. H., 1970, Branchial reduction and renal stimulation of (Na+, K +)-ATPase by prolactin in hypophysectomized killifish in fresh water, Nature 228:378.

    Article  PubMed  CAS  Google Scholar 

  • Post, R. L., and Sen, A. K., 1967, Sodium and potassium-stimulated ATPase, in: Methods in Enzymology (R. Estabrook and M. Pullman, eds.), Vol. X, pp. 762–768, Academic Press, New York.

    Google Scholar 

  • Post, R. L., Kume, S., Tobin, T., Orcutt, B., and Sen, A. K., 1969, Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase, J. Gen. Physiol. 54:3065.

    Article  Google Scholar 

  • Post, R. L., Hegyvary, G., and Kume, S., 1972, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 247:6530.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Toda, G., and Rogers, F. N., 1975a, Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase, J. Biol. Chem. 250:691.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Toda, G., Kume, S., and Taniguchi, K., 1975b, Synthesis of adenosine triphosphate by way of potassium-sensitive phosphoenzyme of sodium-potassium adenosine triphosphatase, J. Supramol. Structure, in press.

    Google Scholar 

  • Robinson, J. D., 1973, Variable affinity of the (Na++K+)-dependent adenosine triphosphatase for potassium. Studies using beryllium inactivation, Arch. Biochem. Biophys. 156:232.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1974a, Free Mg++ and proposed isomerizations of (Na++K +)-dependent ATPase, FEBS Lett. 47:352.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1974b, Cation interactions with different functional states of the Na +, K +-ATPase, Ann. N.Y. Acad. Sci. 242:185.

    Article  PubMed  CAS  Google Scholar 

  • Roeloesen, B., and van Deenen, L., 1973, Lipid requirement of membrane-bound ATPase, Eur. J. Biochem. 40:245.

    Article  Google Scholar 

  • Sachs, J. R., and Welt, L. G., 1967, The concentration dependence of active K+ transport in the human red blood cell, J. Clin. Invest. 46:65.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, A., Seregi, A., and Komlos, M., 1974, Ascorbic acid-like effect of the soluble fraction of rat brain on ATPase and its relation to catecholamines and chelating agents, Biochem. Pharmacol. 23:2257.

    Article  PubMed  CAS  Google Scholar 

  • Schatzman, H., 1953, Herzglykoside als Hemmstoffe für den aktiven Kalium und Natrium Transport durch die Erytrhrocytenmembran, Helv. Physiol. Pharmacol. Acta 11:346.

    Google Scholar 

  • Schmidt, U., and Dubach, U. C., 1974, Sensitivity of Na K adenosine triphosphatase activity in various structures of the rat nephron: Studies with adrenalectomy, Eur. J. Clin. Invest. 1:307.

    Article  Google Scholar 

  • Schultz, S. G., Frizzell, R. A., and Nellans, H. N., 1974, Ion transport by mammalian small intestine, Annu. Rev. Physiol. 36:51.

    Article  PubMed  CAS  Google Scholar 

  • Shamoo, A. E., 1974, Isolation of a sodium-dependent ionophore from (Na++K+)-ATPase preparations, Ann. N. Y. Acad. Sci. 242:389.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, T. I., 1954, Sodium and potassium movements in red cells, Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  • Siegel, G. J., and Albers, R. W., 1967, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of responses to Na+ and K+ by arsenite plus 2,3-dimercaptopropanol, J. Biol. Chem. 242:4972.

    PubMed  CAS  Google Scholar 

  • Siegel, G. J., and Albers, R. W., 1970, Nucleoside triphosphate phosphohydrolases, in: Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 4, pp. 13–44, Plenum Press, New York.

    Google Scholar 

  • Siegel, G. J., and Goodwin, B., 1972, Sodium-potassium activated adenosine triphosphatase: potassium regulation of enzyme phosphorylation, J. Biol. Chem. 247:3630.

    PubMed  CAS  Google Scholar 

  • Siegel, G. J., Koval, G. J., and Albers, R. W., 1969, Sodium-potassium-activated adenosine triphosphatase. VI. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain, J. Biol. Chem. 244:3264.

    PubMed  CAS  Google Scholar 

  • Simons, T. J. B., 1974, Potassium: potassium exchange catalysed by the sodium pump in human red cells, J. Physiol, 237:123.

    PubMed  CAS  Google Scholar 

  • Simpkins, H., and Hokin, L. E., 1973, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. XIII. On the organization and role of phospholipids in the purified enzyme, Arch. Biochem. Biophys. 159:897.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1960, Further investigations on a Mg+++Na+-activated adenosinetriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane, Biochim. Biophys. Acta 42:6.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1962, Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K +, Biochim. Biophys. Acta 58:314.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1973, The relationship of the (Na++K +)-activated enzyme system to transport oe sodium and potassium across the cell membrane, Bioenergetics 4:1.

    Article  CAS  Google Scholar 

  • Sullivan, C. W., and Volcani, B. E., 1974, Synergistically stimulated (Na +, K +)-adenosine triphosphatase from plasma membrane of a marine diatom, Proc. Natl. Acad. Sci. U.S.A. 71:4376.

    Article  PubMed  CAS  Google Scholar 

  • Swann, A. C., and Albers, R. W., 1975a, Sodium+potassium-activated ATPase of mammalian brain: Regulation of phosphatase activity, Biochim. Biophys. Acta 382:437.

    Article  PubMed  CAS  Google Scholar 

  • Swann, A. C., and Albers, R. W., 1975b, (Na +, K +)-Adenosine triphosphatase of mammalian brain: Interactions with Mg++, Biochim. Biophys. Acta, in press.

    Google Scholar 

  • Taniguchi, K., and Post, R. L., 1975, Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 250:3010.

    PubMed  CAS  Google Scholar 

  • Thomas, R. C., 1972, Electrogenic sodium pump in nerve and muscle cells, Physiol. Rev. 52:563.

    PubMed  CAS  Google Scholar 

  • Tobin, T., Akera, T., Baskin, S., and Brody, T., 1973, Calcium ion and sodium-and potassium-dependent adenosine triphosphatase: Its mechanism of inhibition and identification of the E1-P intermediate, Mol. Pharmacol. 9:336.

    PubMed  CAS  Google Scholar 

  • Tosteson, D. C., 1963, Regulation of cell volume by sodium and potassium transport, in: The Cellular Functions of Membrane Transport (J. F. Hoffman, ed.), pp. 3–22, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Uesugi, S., Dulak, N. C., Dixon, J. F., Hexum, T. D., Dahl, J. L., Perdue J. F., and Hokin, L. E., 1971, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a Lubrol-solubilized brain enzyme, J. Biol. Chem. 246:531.

    PubMed  CAS  Google Scholar 

  • Vaughan, G., and Cook, J., 1972, Regeneration of cation-transport capacity in HeLa cell membranes after specific blockade by ouabain, Proc. Natl. Acad. Sci. U.S.A. 69:2627.

    Article  PubMed  CAS  Google Scholar 

  • Whittam, R., 1964, The interdependence of metabolism and active transport, in: The Cellular Functions of Membrane Transport (J. F. Hoffman, ed.), pp. 139–154, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Yoshimura, K., 1973, Activation of Na-K activated ATPase in rat brain by catecholamine, J. Biochem. 71:389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Albers, R.W. (1976). The (Sodium plus Potassium)-Transport ATPase. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics