Skip to main content

Plasma Membrane Calcium Transport and Membrane-Bound Enzymes

  • Chapter
The Enzymes of Biological Membranes

Abstract

This chapter will consider evidence demonstrating the existence in the plasma membrane of an active transport system for calcium. (The terms calcium and Ca are used here to denote calcium in general, including bound calcium and, possibly, free ionized calcium. When free ionized calcium is meant, the symbol Ca2+ will be employed.) Evidence gained mainly from studies using the human red blood cell (RBC) will be reviewed. Reference and inference to calcium transport in other plasma membranes will be made where this seems justified. The relationship of plasma membrane calcium transport to several membrane-bound enzymes will be discussed, consideration of the potential significance of plasma membrane transport to cellular biology will be undertaken, and the possible role of plasma membrane calcium transport in several diseases will be considered. We shall attempt to critically assess the evidence for plasma membrane calcium transport and will attempt to show that transport of calcium in the RBC plasma membrane is representative of most cellular plasma membranes. While not necessarily comprehensive this approach reflects our desire to bridge the gap between basic biochemistry-biophysics and clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, S., and Mawatari, S., 1971, Oubain and erythrocyte-ghost adenosine triphosphatase. Effects in human muscular dystrophies, Arch. Neurol. 24:187–190.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, in: Progress in Biophysics and Molecular Biology (J. A. V. Butler and D. Noble, eds.), pp. 179–223, Pergamon Press, New York.

    Google Scholar 

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200:431–458.

    CAS  Google Scholar 

  • Baker, R., Powars, D., and Haywood, L.J., 1974, Restoration of the deformability of “irreversibly” sickled cells by procaine hydrochloride, Biochem. Biophys. Res. Commun. 59:548–556.

    Article  PubMed  CAS  Google Scholar 

  • Balfe, J. W., Cole, C., and Welt, L. G., 1968, Red-cell transport defect in patients with cystic fibrosis and in their parents, Science 162:689–690.

    Article  PubMed  CAS  Google Scholar 

  • Blostein, R., and Burt, V. K., 1971, Interaction of N-ethylmaleimide and Ca2+ with human erythroctye membrane ATPase, Biochim. Biophys. Acta 241:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells, J. Membr. Biol. 6:315–328.

    Article  CAS  Google Scholar 

  • Blum, R. M., and Hoffman, J. F., 1972, Ga-induced K transport in human red cells: Localization of the Ga-sensitive site to the inside of the membrane, Biochem. Biophys. Res. Commun. 46:1146–1152.

    Article  PubMed  CAS  Google Scholar 

  • Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membr. Biol. 8:1–26.

    Article  PubMed  CAS  Google Scholar 

  • Bolingbroke, V., and Maizels, M., 1959, Calcium ions and the permeability of human erythrocytes, J. Physiol. (London) 149:563–585.

    CAS  Google Scholar 

  • Bond, G. H., 1972, Ligand-induced conformational changes in the (Mg2++Ca2+)-dependent ATPase of red cell membranes, Biochim. Biophys. Acta 288:423–433.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. H., and Clough, D. L., 1973, A soluble protein activator of (Mg2++Ca2+)-dependent ATPase in human red cell membranes, Biochim. Biophys. Acta 323:592–599.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. H., and Green, J. W., 1971, Effects of monovalent cations on the (Mg2++Ca2 +)-dependent ATPase of the red cell membrane, Biochim. Biophys. Acta 241:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Borle, A. B., 1968, Calcium metabolism in HeLa cells and the effects of parathyroid hormone, J. Cell Biol. 36:567–582.

    Article  PubMed  CAS  Google Scholar 

  • Borle, A. B., 1969a, Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx, J. Gen. Physiol. 53:43–56.

    Article  PubMed  CAS  Google Scholar 

  • Borle, A. B., 1969b, Kinetic analyses of calcium movements in HeLa cell cultures. II. Calcium efflux, J. Gen. Physiol. 53:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Borle, A. B., 1972, Kinetic analyses of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells, J. Membr. Biol. 10:45–66.

    Article  PubMed  CAS  Google Scholar 

  • Bramley, T. A., and Coleman, R., 1972, Effects of inclusion of Ca2 +, Mg2 +, EDTA or EGTA during the preparation of erythrocyte ghosts by hypotonic haemolysis, Biochim. Biophys. Acta 290:219–228.

    Article  PubMed  CAS  Google Scholar 

  • Bramley, T. A., Coleman, R., and Finean, J. B., 1971, Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities, Biochim. Biophys. Acta 241:752–759.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H. D., Chattopadhyay, S. K., and Patel, A. B., 1967, Erythrocyte abnormality in human myopathy, Science 157:1577–1578.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, J. T., and Hawthorne, J. H., 1972, Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding, J. Biol. Chem. 247:7218–7223.

    PubMed  CAS  Google Scholar 

  • Carsten, M. E., and Mommaerts, W. F. H. M., 1964, The accumulation of calcium ions by sarcotubular vesicles, J. Gen. Physiol. 48:183–197.

    Article  PubMed  CAS  Google Scholar 

  • Gha, Y. N., Shin, B. C., and Lee, K. S., 1971, Active uptake of Ca++ and Ca++-activated Mg++ ATPase in red cell membrane fragments, J. Gen. Physiol. 57:202–215.

    Article  Google Scholar 

  • Chau-Wong, M., and Seeman, P., 1971, The control of membrane-bound Ca2+ by ATP, Biochim. Biophys. Acta 241:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Cole, C. H., and Dirks, J. H., 1972, Changes in erythrocyte membrane ATPase in patients with cystic fibrosis of the pancreas, Pediat. Res. 6:616–621.

    PubMed  CAS  Google Scholar 

  • Davis, P. W., and Vingenzi, F. F., 1971, Ca-ATPase activation and NaK-ATPase inhibition as a function of calcium concentration in human red cell membranes, Life Sci. 10:401–406.

    Article  CAS  Google Scholar 

  • Dodge, J. T., Mitchell, G., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Biochim. Biophys. Acta 100:119–130.

    CAS  Google Scholar 

  • Douglas, W. W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, B. J. Pharmacol. 34:451–474.

    CAS  Google Scholar 

  • Duffy, M. J., and Schwarz, V., 1973, Calcium binding by the erythrocyte membrane, Biochim. Biophys. Acta 330:294–301.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, C. J., 1967, The Molecular Properties and Evolution of Excitable Cells, Pergamon Press, Oxford.

    Google Scholar 

  • Dunham, E. T., and Glynn, I. M., 1961, Adenosinetriphosphatase activity and the active movements of alkali metal ions, J. Physiol (London) 156:274–293.

    CAS  Google Scholar 

  • Dunham, P., and Gunn, R. B., 1972, Adenosine triphosphatase and active cation transport in red blood cell membranes, Arch. Intern. Med. 129:241–247.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, M. J., 1974, Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352:97–116.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., and Jacob, H. S., 1973, Elevated erythrocyte calcium in sickle cell disease, Nature 246:105–106.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, F. H., and Whittam, R., 1966, The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity, Biochem. J. 99:232–238.

    PubMed  CAS  Google Scholar 

  • Feig, S. A., and Guidotti, G., 1974, Relative deficiency of Ca2 +-dependent adenosine triphosphatase activity of red cell membranes in hereditary spherocytosis, Biochem. Biophys. Res. Commun. 58:487–494.

    Article  PubMed  CAS  Google Scholar 

  • Feig, S. A., Segel, G. B., Kern, K. A., Osher, A. B., and Schwartz, R. H., 1974, Erythrocyte transport function in cystic fibrosis, Pediat. Res. 8:594–597.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, D. F., Landon, E. J., Debbas, G., and Hurwitz, L., 1972, A calcium pump in vascular smooth muscle, Science 176:305–306.

    Article  PubMed  CAS  Google Scholar 

  • Foreman, J. C., Mongar, J. L., and Gomperts, B. D., 1973, Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process, Nature 245:249–251.

    Article  PubMed  CAS  Google Scholar 

  • Forstner, J., and Manery, J. F., 1971a, Calcium binding by human erythrocyte membranes, Biochem. J. 124:563–571.

    PubMed  CAS  Google Scholar 

  • Forstner, J., and Manery, J. F., 1971b, Calcium binding by human erythrocyte membranes. Significance of carboxyl, amino and thiol groups, Biochem. J. 125:343–351.

    PubMed  CAS  Google Scholar 

  • Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly, J. Cell. Biol. 62:594–609.

    Article  PubMed  CAS  Google Scholar 

  • GÁrdos, G., 1958, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15:121–125.

    Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967, The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump, J. Physiol. (London) 192:237–256.

    CAS  Google Scholar 

  • Garrison, J. C., and Terepka, A. R., 1972, Calcium-stimulated respiration and ctive calcium transport in the isolated chick chorioallantoic membrane, J. Membr. Biol. 7:128–145.

    Article  Google Scholar 

  • Glynn, I. M., 1964, The action of cardiac glycosides on ion movements, Pharmacol. Rev. 16:381–407.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., Hansen, L. G., Shapiro, B. L., and Warwick, W. J., 1973, Erythrocyte enigmas in cystic fibrosis, Proc. Soc. Exp. Biol. Med. 142:577–579.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., 1973, The erythrocyte membrane variability and membrane enzyme activity, Biochim. Biopkys. Acta 300:319–340.

    CAS  Google Scholar 

  • Hanahan, D. J., Ekholm, J. E., and Luthra, M. G., 1974, Is lipid lost during preparation of erythrocyte membranes?, Biochim. Biophys. Acta 363:283–286.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D. G., and Long, G., 1968, The calcium content of human erythrocytes, J. Physiol. (London) 199:367–381.

    CAS  Google Scholar 

  • Hoffman, J. F., 1962, Cation transport and structure of the red-cell plasma membrane, Circulation 26:1201–1213.

    CAS  Google Scholar 

  • Horton, C. R., Cole, W. Q., and Bader, H., 1970, Depressed (Ca++)-transport ATPase in cystic fibrosis erythrocytes, Biochem. Biophys. Res. Commun. 40:505–509.

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz, L., Fitzpatrick, D. F., Debbas, G., and Landon, E. J., 1973, Localization of calcium pump activity in smooth muscle, Science 179:384–386.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1973, Muscular contraction and cell motility, Nature, 243:445–449.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, H., Amsden, T., and White, J., 1972, Membrane microfilaments of erythrocytes: Alteration in intact cells reproduces the hereditary spherocytosis syndrome, Proc. Natl. Acad. Sci. U.S.A. 69:471–474.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, H. S., Ruby, A., Overland, E. S., and Mazia, D., 1971, Abnormal membrane protein of red blood cells in hereditary spherocytosis, J. Clin. Invest. 50:1800–1805.

    Article  PubMed  CAS  Google Scholar 

  • Jay, A. W. L., and Burton, A. C., 1969, Direct measurement of potential difference across the human red blood cell membrane, Biophys. J. 9:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, M., Shohet, S. B., and Nathan, D. G., 1973, The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro, Blood 42:835–842.

    PubMed  CAS  Google Scholar 

  • Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300:341–378.

    PubMed  CAS  Google Scholar 

  • Kahlenberg, A., Walker, C., and Rohrlick, R., 1974, Evidence for an asymmetric distribution of phospholipids in the human erythrocyte membrane, Can. J. Biochem. 52:803–806.

    Article  PubMed  CAS  Google Scholar 

  • Kalix, P., 1971, Uptake and release of calcium in rabbit vagus nerve, Pfluegers Arch. 326:1–14.

    Article  CAS  Google Scholar 

  • Kant, J. A., and Steck, T. L., 1972, Cation-impermeable inside-out and right-side-out vesicles from human erythrocyte membranes, Nature (London), New Biol. 240:26–28.

    CAS  Google Scholar 

  • Klassen, G. A., and Blostein, R., 1969, Adenosine triphosphatase and myopathy, Science 163:492–493.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., Proverbio, F., and Hoffman, J. F., 1974, Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts, J. Gen. Physiol. 63:324–336.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F. M., and Hoffman, J. F., 1972, Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60:406–429.

    Article  PubMed  CAS  Google Scholar 

  • LaCelle, P. L., 1970, Alteration of membrane deformability in hemolytic anemias, Semin. Hematol. 7:355–371.

    PubMed  CAS  Google Scholar 

  • LaCelle, P. L., Kirkpatrick, F. H., Udkow, M. P., and Arkin, B., 1973, Membrane fragmentation and Ca++-membrane interaction: Potential mechanisms of shape change in the senescent red cell, in: Red Blood Cell Shape (M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 69–78, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Lamb, J. F., and Lindsay, R., 1971, Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells, J. Physiol. (London) 218:691–708.

    CAS  Google Scholar 

  • Lee, K. S., and Shin, B. C., 1969, Studies on the active transport of calcium in human red cells, J. Gen. Physiol. 54:713–729.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., 1971a, On the ATP dependence of the Ca2 +-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827–830.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., 1971b, Effect of ouabain on the Ca2 +-dependent increase in K+ permeability in depleted guinea-pig red cells, Biochim. Biophys. Acta 249:236–239.

    Article  PubMed  CAS  Google Scholar 

  • Lichtman, M. A., and Weed, R. I., 1973, Divalent cation content of normal and ATP-depleted erythrocytes and erythrocyte membranes, in: Red Blood Cell Shape (M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 79–93, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Ling, G. N., 1962, A Physical Theory of the Living State, Blaisdell, New York.

    Google Scholar 

  • Long, G., and Mouat, B., 1971, The binding of calcium ions by erythrocytes and ‘ghost’-cell membranes, Biochem. J. 123:829–836.

    PubMed  CAS  Google Scholar 

  • Luft, J. H., 1971, Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action, Anat. Rec. 171:347–368.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S. W. Y., Shami, Y., Messer. H. H., and Copp, D. H., 1974, Properties of Ca2 +-ATPase from the gill of rainbow trout, Biochim. Biophys. Acta 345:243–251.

    Article  PubMed  CAS  Google Scholar 

  • Maddy, A. H., 1970, Erythrocyte membrane proteins, Semin. Hematol. 7:275–295.

    PubMed  CAS  Google Scholar 

  • Marghesi, V. T., and Palade, G. E., 1967, The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes, J. Cell Biol. 35:385–404.

    Article  Google Scholar 

  • Marchesi, V. T., and Steers, E., Jr., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159:203–204.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi, V. T., Steers, E., Tillagk, T. W., and Marghesi, S. L., 1969, Some properties of spectrin, in: Red Cell Membrane, Structure, and Function (G. A. Jamieson and T.J. Greenwalt, eds.), pp. 117–130, Lippincott, Philadelphia.

    Google Scholar 

  • Matheson, D. W., and Howland, J. L., 1974, Erythrocyte deformation in human muscular dystrophy, Science 184:165–166.

    Article  PubMed  CAS  Google Scholar 

  • Mirčevová, L., 1974, Scanning electron microscopy of erythrocyte ghosts prepared with and without ATP addition, Blut 29:108–114.

    Article  PubMed  Google Scholar 

  • Mirčevová, L., and Ćimonová, A., 1972, Effect of caffeine and theophylline on Mg++-dependent ATPase, Arch. Int. Physiol. Biochim. 80:815–818.

    Article  PubMed  Google Scholar 

  • Mirčevová, L., and Ćimonová, A., 1973, Effect of barbiturate on Mg++-dependent ATPase in human erythrocytes, Experientia 29:660.

    Article  PubMed  Google Scholar 

  • Moore, L., Fitzpatrick, D. F., Chen, T. S., and Landon, E. J., 1974, Calcium pump activity of the renal plasma membrane and renal microsomes, Biochim. Biophys. Acta 345:405–418.

    Article  CAS  Google Scholar 

  • Morse, P. F., and Howland, J. L., 1973, Erythrocytes from animals with genetic muscular dystrophy, Nature 245:156–157.

    Article  PubMed  CAS  Google Scholar 

  • McEvoy, F. A., Davies, R. J., Goodghild, M. C., and Anderson, C. M., 1974, Erythrocyte membrane properties in cystic fibrosis, Clin. Chim. Acta 54:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru, Y., and Schwartz, A., 1971, Adenosine triphosphate-dependent calcium-binding vesicles; magnesium, calcium adenosine triphosphatase and sodium, potassium adenosine triphosphatase: Distributions in dog brain, Arch. Biochem. Biophys. 144:16–29.

    Article  CAS  Google Scholar 

  • Ohashi, T., Uchida, S., Nagai, K., and Yoshida, H., 1970, Studies on phosphate hydrolyzing activities in the synaptic membrane, J. Biochem. (Tokyo) 67:635–641.

    CAS  Google Scholar 

  • Olson, E. J., and Cazort, R. J., 1969, Active calcium and strontium transport in human erythrocyte ghosts, J. Gen. Physiol 53:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E. J., and Cazort, R. J., 1974, Investigation of the accompaniment of calcium during active calcium transport from human erythrocyte ghosts, J. Gen. Physiol. 63:590–600.

    Article  PubMed  CAS  Google Scholar 

  • Orentligher, M., and Ornstein, R. S., 1971, Influence of external cations on caffeine-induced tension: Calcium extrusion in crayfish muscle, J. Membr. Biol. 5:319–333.

    Article  Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1971a, Effects of calcium and adenosine triphosphate on volume of human red cell ghosts, Am. J. Physiol. 220:19–26.

    PubMed  CAS  Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1971b, Relation of Ca++-activated ATPase to Ca++-linked shrinkage of human red cell ghosts, Am. J. Physiol. 220:1028–1032.

    PubMed  CAS  Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1972, Size dependence of ghosts from stored erythrocytes on calcium and adenosine triphosphate, Blood 40:261–275.

    PubMed  CAS  Google Scholar 

  • Parkinson, D. K., and Radde, I. C., 1969, Calcitonin action on membrane ATPase—a hypothesis, in: Calcitonin 1969, Proceedings of the Second International Symposium, pp. 466–471, Springer-Verlag, New York.

    Google Scholar 

  • Patrick, G., 1973, The regulation of intestinal calcium transport by vitamin D, Nature 243:89–91.

    Article  PubMed  CAS  Google Scholar 

  • Porzig, H., 1970, Calcium efflux from human erythrocyte ghosts, J. Membr. Biol. 2:324–340.

    Article  Google Scholar 

  • Porzig, H., 1973, Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts, J. Membr. Biol. 11:21–46.

    Article  PubMed  CAS  Google Scholar 

  • Probstfield, J. L., Wang, Y., and From, A. H. L., 1972, Cation transport in Duchenne muscular dystrophy erythrocytes, Proc. Soc. Exp. Biol. Med. 141:479–481.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170:404–412.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H., and Bordier, P., 1974, The Physiological and Cellular Basis of Metabolic Bone Disease, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Reuter, H., 1974, Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance, Circ. Res. 34:599–605.

    PubMed  Google Scholar 

  • Riordan, J. R., and Passow, H., 1971, Effects of calcium and lead on potassium permeability of human erythrocyte ghosts, Biochim. Biopkys. Acta 249:601–605.

    Article  CAS  Google Scholar 

  • Romero, P. J., 1974, The role of membrane-bound magnesium in the permeability of ghosts to K +, Biochim. Biophys. Acta 339:116–125.

    Article  PubMed  CAS  Google Scholar 

  • Romero, P. J., and Whittam, R., 1971, The control by internal calcium of membrane permeability to sodium and potassium, J. Physiol. (London) 214:481–507.

    CAS  Google Scholar 

  • Rosenthal, A. S., Kregenow, F. M., and Moses, H. L., 1970, Some characteristics of a Ca2 +-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils, Biochim. Biophys. Acta 196:254–262.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, R. P., 1974, Calcium and the Secretory Process, Plenum Press, New York.

    Google Scholar 

  • Rummel, W., Scifen, E., and Baldauf, J., 1962, Aufnahme und Abgabe von Calcium an Erythro-cyten vom Menschen, Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 244:172–184.

    Article  CAS  Google Scholar 

  • Rummel, W., Scifen, E., and Baldauf, J., 1963, Influence of calcium and ouabain upon the potassium influx in human erythrocytes, Biochem. Pharmacol. 12:557–563.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., and Blaustein, M. P., 1974, Calcium efflux from barnacle muscle fibers. Dependence on external cations, J. Gen. Physiol. 63:144–167.

    Article  PubMed  CAS  Google Scholar 

  • Scharff, O., 1972, The influence of calcium ions on the preparation of the (Ca2++Mg2+)-activated membrane ATPase in human red cells, Scand. J. Clin. Lab. Invest. 30:313–320.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., 1953, Herzglykoside als Hemmstoffe fuer den aktiven Kalium-und Natriumtransport durch die Erythrocytenmembran, Helv. Physiol. Pharmacol. Acta 11:346–354.

    PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., 1966, ATP-dependent Ca++ extrusion from human red cells, Experientia 22:364–365.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., 1970, Transmembrane calcium movements in resealed human red cells, in: Calcium and Cellular Function (A. W. Cuthbert, ed.), pp. 85–95, St. Martin’s Press, New York.

    Google Scholar 

  • Schatzmann, H. J., 1973, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. (London) 235:551–569.

    CAS  Google Scholar 

  • Schatzmann, H. J., 1975, Active calcium transport and Ca2 +-activated ATPase in human red cells, in: Current Topics in Membranes and Transport, Vol. 6 (F. Bronner and A. Kleinzeller, eds.), pp. 125–168, Academic Press, New York.

    Google Scholar 

  • Schatzmann, H. J., and Rossi, G. L., 1971, (Ca2++Mg2+)-activated membrane ATPases in human red cells and their possible relations to cation transport, Biochim. Biophys. Acta 241:379–392.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., and Tschabold, M., 1971, The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells, Experientia 27:59–61.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., and Vincenzi, F. F., 1969, Calcium movements across the membrane of human red cells, J. Physiol. (London) 201:369–395.

    CAS  Google Scholar 

  • Schwoch, G., and Passow, H., 1973, Preparation and properties of human erythrocyte ghosts, Mol. Cell. Biochem. 2:197–218.

    Article  PubMed  CAS  Google Scholar 

  • Shami, Y., and Radde, I. C., 1971, Calcium-stimulated ATPase of guinea pig placenta, Biochim. Biophys. Acta 249:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J. and Nicolson G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394–401.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., Weinstein, R. S., Straus, J. H., and Wallach, D. F. H., 1970, Inside-out red cell membrane vesicles: Preparation and purification, Science 168:255–257.

    Article  PubMed  CAS  Google Scholar 

  • Sulakhe, P. V., and Dhalla, N. S., 1971, Excitation-contraction coupling in heart. VI. Demonstration of calcium activated ATPase in the dog heart sarcolemma, Life Sci. 10:185–191.

    Article  CAS  Google Scholar 

  • Sulakhe, P. V., Drummond, G. I., and Ng, D. G., 1973a, Calcium binding by skeletal muscle sarcolemma, J. Biol. Chem. 248:4150–4157.

    PubMed  CAS  Google Scholar 

  • Sulakhe, P. V., Drummond, G. I., and Ng, D. C., 1973b, Adenosine triphosphatase activities of muscle sarcolemma, J. Biol. Chem. 248:4158–4162.

    PubMed  CAS  Google Scholar 

  • Swanson, P. D., Anderson, L., and Stahl, W. L., 1974, Uptake of calcium ions by synaptosomes from rat brain, Biochim. Biophys. Acta 356:174–183.

    Article  PubMed  CAS  Google Scholar 

  • Szász, I., Teitel, P., and Gardos, G., 1970, Structure and function of erythrocytes. V. Differences in the Ga2+-dependence of the ATP requiring functions of erythrocytes, Acta Biochim. Biophys. Acad. Sci. Hung. 5:409–413.

    PubMed  Google Scholar 

  • Taylor, D. L., Gondeelis, J. S., Moore, P. L., and Allen, R. D., 1973, The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm, J. Cell Biol. 59:378–394.

    Article  PubMed  CAS  Google Scholar 

  • van Rossum, G. D. V., 1970, Net movements of calcium and magnesium in slices of rat liver, J. Gen. Physiol. 55:18–32.

    Article  PubMed  Google Scholar 

  • van Rossum, G. D. V., Smith, K. P., and Morris, H. P., 1973, The net extrusion of calcium and its temporal relation to the accumulation of potassium in slices of rat liver and of Morris hepatoma 5123tc and 3924A, Cancer Res. 33:1086–1091.

    PubMed  Google Scholar 

  • Vingenzi, F. F., 1968, The calcium pump of erythrocyte membrane and its inhibition by ethacrynic acid, Proc. West. Pharmacol. Soc. 11:58–60.

    Google Scholar 

  • Vingenzi, F. F., 1971, A calcium pump in red cell membranes, in: Cellular Mechanisms for Calcium. Transfer and Homeostasis (G. Nichols and R. H. Wasserman, eds.), pp. 135–149, Academic Press, New York.

    Google Scholar 

  • Vingenzi, F. F., and Schatzmann, H. J., 1967, Some properties of Ga-activated ATPase in human red cell membranes, Helv. Physiol. Pharmacol. Acta 25: CR233–CR234.

    Google Scholar 

  • Wallach, D. F. H., 1972, The Plasma Membrane: Dynamic Perspectives, Genetics and Pathology, Springer-Verlag, New York.

    Google Scholar 

  • Wallach, S., Ghausmer, A. B., and Sherman, B. S., 1971, Hormonal effects on calcium transport in liver, Clin. Orthop. Relat. Res., 1971, 40–46.

    Article  Google Scholar 

  • Watson, E. L., Vincenzi, F. F., and Davis, P. W., 1971a, Ca2 +-activated membrane ATPase: Selective inhibition by ruthenium red, Biochim. Biophys. Acta 249:606–610.

    Article  PubMed  CAS  Google Scholar 

  • Watson, E. L., Vincenzi, F. F., and Davis, P. W., 1971b, Nucleotides as substrates of Ca-ATPase and NaK-ATPase in isolated red cell membranes, Life Sci. 10:1399–1404.

    Article  CAS  Google Scholar 

  • Weed, R. I., and Chailley, B., 1972, Calcium-pH interactions in the production of shape change in erythrocytes, Nouv. Rev. Fr. Hematol. 12:775–788.

    PubMed  CAS  Google Scholar 

  • Weed, R. I., LaGelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deform-ability, J. Clin. Invest. 48:795–809.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, M. L., and Lee, K. S., 1972, Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes, J. Gen. Physiol. 59:462–475.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, R. S., and MgNutt, N. S., 1970, Ultrastructure of red cell membranes, Semin. Hematol. 7:259–274.

    PubMed  CAS  Google Scholar 

  • Whittam, R., 1962, The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport, Biochem. J. 84:110–118.

    PubMed  CAS  Google Scholar 

  • Whittam, R., 1968, Control of membrane permeability to potassium in red blood cells, Nature, 219:610.

    Article  PubMed  CAS  Google Scholar 

  • Wins, P., and Dargent-Salée, M. L., 1970, The effects of calcium on the ATPase activity of electric tissue extracts, Biochim. Biophys. Acta 203:342–344.

    Article  PubMed  CAS  Google Scholar 

  • Wins, P., and Schoffeniels, E., 1966a, ATP+Ca++-linked contraction of red cell ghosts, Arch. Int. Physiol. Biochim. 74:812–820.

    Article  PubMed  CAS  Google Scholar 

  • Wins, P., and Schoffeniels, E., 1966b, Studies on red-cell ghost ATPase systems: Properties of a (Mg+++Ca++-dependent ATPase, Biochim. Biophys. Acta 120:341–350.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, H. U., 1970, Purification of the Ca2+-dependent ATPase of human erythrocyte membranes, Biochim. Biophys. Acta 219:521–524.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, H. LI., 1972, Studies on a Ca2+-dependent ATPase of human erythrocyte membranes. Effects of Ca2+ and H+, Biochim. Biophys. Acta 266:361–375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Vincenzi, F.F., Hinds, T.R. (1976). Plasma Membrane Calcium Transport and Membrane-Bound Enzymes. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics