Skip to main content

Bilirubin Metabolism: An Overview

  • Chapter
Jaundice

Part of the book series: Hepatology ((H,volume 2))

  • 216 Accesses

Abstract

Bilirubin is an open-chain tetrapyrrole with an approximate molecular weight of 585. The four pyrrole rings are linked by three carbon bridges of which two are unsaturated (outside) and one is saturated (central). The nature and order of the eight side chains located on the ß-carbons of the pyrrole rings are the same as in protoporphyrin IX. This finding led Fischer and his associates(1) to the conclusion that naturally-occurring bilirubin is derived from ferroprotoporphyrin IX (protoheme) by cleavage of the porphyrin ring at its α-methene carbon bridge; hence the resulting bilirubin is designated as IXα(l). Biliverdin IXα, a green-blue tetrapyrrole formed as an intermediate in the conversion of ferroprotoporphyrin IX to bilirubin IXα, possesses two hydrogen atoms less than bilirubin. It is probable that all bilirubin formed under biologic conditions has the IXα configuration(l), as cleavage of protoheme at carbon bridges other than the α-carbon bridge has not been demonstrated in vivo. The only known exception to this rule is the integumental pigment of a butterfly species (Pieris brassicae) which has been identified as biliverdin IXγ(2). It should be noted, however, that the naturally occurring bilirubin IXα can undergo isomeric scrambling about the central saturated carbon bridge, in that the molecule can split in the middle, permitting two left or two right dipyrryhnethenes to reassemble with themselves (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FISCHER H, ORTH H: Die Chemie des Pyrrols. Leipzig, Akademische Verlagsgesellschaft m.b.H, 1937.

    Google Scholar 

  2. RUDIGER W, KLOSE W, WUILLAUME M, et al: On the biosynthesis of biliverdin IX- in Pieris Brassicae. Experientia 25: 487–488, 1969.

    Article  CAS  Google Scholar 

  3. McDONAGH AF, ASSISI F: The ready isomerization of bilirubin IX- in aqueous solution. Biochem J 129: 797–800, 1972.

    CAS  Google Scholar 

  4. LESTER R, SCHMID R: Intestinal absorption of bile pigments. II. Bilirubin absorption in man. N Engl J Med 269: 178–182, 1963.

    Article  PubMed  CAS  Google Scholar 

  5. OSTROW JD: Absorption of bile pigments by the gallbladder. J Clin Invest 46: 2035–2052, 1967.

    Article  CAS  Google Scholar 

  6. SCHENKER S, DAWBER NH, SCHMID R: Bilirubin metabolism in the fetus. J Clin.Invest 43: 32–39, 1964.

    Article  PubMed  CAS  Google Scholar 

  7. DIAMOND I, SCHMID R: Experimental bilirubin encephalopathy:- the mode of entry of bilirubin- into the central nervous system. J Clin Invest 45: 678–689, 1966.

    Article  PubMed  CAS  Google Scholar 

  8. SCHMID R: Hyperbilirubinemia. In The Metabolic Basis of Inherited Disease, edited by Stanbury JB, Wyngaarden JB, Fredrickson DS, Boston, McGraw-Hill, 3rd edition, 1972. pp 1141–1178.

    Google Scholar 

  9. VIRCHOW R: Die pathologischen Pigmente. Arch f ür Patho- logische Anatomie und Physiologie und Klinische Medizin1: 379–402, 1847.

    Google Scholar 

  10. WHIPPLE GH, HOOPER CW: Bile pigment output influenced by hemoglobin injection, anemia and blood regeneration. Am J Physiol 43: 258–274, 1917.

    CAS  Google Scholar 

  11. ASCHOFF L: Das reticulo-endotheliale System und seine Beziehungen zur Gallenfarbstoffbildung. M üchen Med Wochenschr 69: 1352–1356, 1922.

    Google Scholar 

  12. MANN FC, SHEARD C, BOLLMAN JL et al: The formation of bile pigment from hemoglobin. Am J Physiol 76: 306–315, 1926.

    CAS  Google Scholar 

  13. TENHUNEN R, MARVER HS, SCHMID R: Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem 244: 6388–6394, 1969.

    PubMed  CAS  Google Scholar 

  14. TENHUNEN R, MARVER HS, PIMSTONE NR et al: Enzymatic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochemistry 11: 1716–1720, 1972.

    Article  PubMed  CAS  Google Scholar 

  15. TENHUNEN R, ROSS ME, MARVER HS et al: NADPH-dependent biliverdin reductase: partial purification and characterization. Biochemistry 9: 298–303, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. TENHUNEN R, MARVER HS, SCHMID R: The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 75: 410–421, 1970.

    PubMed  CAS  Google Scholar 

  17. BISSELL DM, HAMMAKER L, SCHMID R: Hemoglobin and erythrocyte catabolism in rat liver: the separate roles of parenchymal and sinusoidal cells. Blood 40: 812–822, 1972.

    PubMed  CAS  Google Scholar 

  18. PIMSTONE NR, ENGEL P, TENHUNEN R et al: Inducible heme oxygenase in the kidney: a model for the homeostatic control of hemoglobin catabolism. J Clin Invest 50: 2042–2050, 1971.

    Article  PubMed  CAS  Google Scholar 

  19. GEMSA D, WOO CH, FUDENBERG HH et al: Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the induction of heme oxygenase. J Clin Invest 52: 812–822, 1973.

    Article  PubMed  CAS  Google Scholar 

  20. ROBINSON SH: The origin of bilirubin. N Engl J Med 279: 143–149, 1968.

    Article  PubMed  CAS  Google Scholar 

  21. CONNEY AH: Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317–366, 1967.

    PubMed  CAS  Google Scholar 

  22. MARVER HS, SCHMID R: Biotransformation in the liver: implications for human disease. Gastroenterology 55: 282–289, 1968.

    PubMed  CAS  Google Scholar 

  23. LEVITT M, SCHACTER BA, ZIPURSKY A et al: The nonerythro- poietic component of early bilirubin. J Clin Invest 47: 1281–1294, 1968.

    Article  PubMed  CAS  Google Scholar 

  24. LANDAW SA, WINCHELL HS: Endogenous production of 14C0: a method for calculation of RBC life-span in vivo. Blood 36: 642–656, 1970.

    PubMed  CAS  Google Scholar 

  25. SCHMID R: Synthesis and degradation of microsomal hemo- roteins. Drug Metab Disposition 1: 256–258, 1973.

    CAS  Google Scholar 

  26. JONES EA, SHRAGER R, BLOOMER JR et al: Quantitative studies f the delivery of hepatic-synthesized bilirubin to plasma utilizing -aminolevulinic acid-4–14C and bilirubin- 3H in man. J Clin Invest 51; 2450–2458, 1972.

    Article  PubMed  CAS  Google Scholar 

  27. ODELL GB: The dissociation of bilirubin from albumin and its linical implications. J Pediatr 55: 268–279, 1959.

    Article  PubMed  CAS  Google Scholar 

  28. STERN L: Drug interactions. II. Drugs, the newborn infant, nd the binding of bilirubin to albumin. Pediatrics 49: 916–918, 1972.

    PubMed  CAS  Google Scholar 

  29. SCHMID R, DIAMOND I, HAMMAKER L et al: The interaction of bilirubin with albumin. Nature (Lond) 206: 1041–1043, 1965.

    Article  CAS  Google Scholar 

  30. LEVI AJ, GATMAITAN Z, ARIAS IM: Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 48: 2156–2167, 1968.

    Article  Google Scholar 

  31. JANSEN FH, BILLING BH: The identification of onoconjugates of bilirubin in bile as amide derivatives. Biochem J 125: 917–919, 1971.

    PubMed  CAS  Google Scholar 

  32. KUENZLE CC: Bilirubin conjugates of human bile. The excretion of bilirubin as the acyl glycosides of aldobiouronic acid, pseudoaldobiouronic acid and hexuronosylhexuronic acid, with a branched-chain hexuronic acid as one of the components of the hexuronosylhexuronide. Biochem J 119: 411–435, 1970.

    PubMed  CAS  Google Scholar 

  33. EEVERY J, VAN DAMME B, MICHIELS R et al: Bilirubin conjugates in bile of man and rat in the normal state and in liver disease. J Clin Invest 51: 2482–2492, 1972.

    Article  Google Scholar 

  34. GORESKY CA: The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Can Med Assoc J 92: 851–857, 1965.

    PubMed  CAS  Google Scholar 

  35. ARIAS I, BERNSTEIN L, TOFFLER R et al: Black liver disease in Corriedale sheep: a new mutation affecting hepatic excretory function. J Clin Invest 43: 1249, 1964 (Abs).

    Article  Google Scholar 

  36. POLAND RL, ODELL GB: Physiologic jaundice: the enterohepatic circulation of bilirubin. N Engl J Med 284: 1–6, 1971.

    Article  PubMed  CAS  Google Scholar 

  37. GRAY CH: Bile Pigments in Health and Disease. Springfield, Illinois, Charles C. Thomas, 1961.

    Google Scholar 

  38. LESTER R, SCHUMER W, SCHMID R: Intestinal absorption of bile pigments. IV. Urobilinogen absorption in man. N Engl J Med 272: 939–948, 1965.

    Article  PubMed  CAS  Google Scholar 

  39. LEVY M, LESTER R, LEVINSKY NG: Renal excretion of urobilinogen in the dog. J Clin Invest 47: 2117–2124, 1968.

    Article  PubMed  CAS  Google Scholar 

  40. ROBINSON SH, VANIER T, DESFORGES JF et al: Jaundice in thalassemia minor; a consequence of ineffective erythropoiesis. N Engl J Med 267: 523–529, 1962.

    Article  PubMed  CAS  Google Scholar 

  41. BERK PD, BLOOMER JR, HOWE RB et al: Constitutional hepatic dysfunction (Gilbert’s syndrome). A new definition based on kinetic studies with unconjugated radiobilirubin. AnJM 49: 296–305, 1970.

    CAS  Google Scholar 

  42. BLACK M, FEVERY J, PARKER D et al: Effect of phenobarbitone on plasma -bilirubin clearance in patients with unconjugated hyperbilirubinaemia. Clin Sci Mol Msd 46: 1–17, 1974.

    CAS  Google Scholar 

  43. HAMMAKER L, SCHMID R: Interference with bile pigment uptake in the liver by flavaspidic acid. Gastroenterology 53: 31–37, 1967.

    PubMed  CAS  Google Scholar 

  44. CRIGLER JF, NAJJAR VA: Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 10: 169–179, 1952.

    PubMed  Google Scholar 

  45. ARIAS IM, GARTNER LM, COHEN M et al: Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity. Am J Med 47: 395–409, 1969.

    Article  PubMed  CAS  Google Scholar 

  46. ARIAS IM: Chronic idiopathic jaundice. In Ikterus, edited by Beck K, Stuttgart, FK Schattauer, 1968.

    Google Scholar 

  47. JANDL JH: Anemia of liver disease: observations on its mechanism. J Clin Invest 34: 390–404, 1955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Schmid, R. (1975). Bilirubin Metabolism: An Overview. In: Goresky, C.A., Fisher, M.M. (eds) Jaundice. Hepatology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2649-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2649-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2651-9

  • Online ISBN: 978-1-4684-2649-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics