Skip to main content

Encapsulation of Enzymes, Cell Contents, Cells, Vaccines, Antigens, Antiserum, Cofactors, Hormones, and Proteins

  • Chapter

Abstract

Unlike the other three major methods of enzyme immobilization, which emphasize the “microenvironment,” encapsulation of enzymes emphasizes the “intracellular environment” of enzymes and proteins (Figure 1). Here, the enzyme solution or suspension is encapsulated or enveloped within a membrane system in such a way that the membrane creates an intracellular environment for the enzymes, preventing them from leaking out or coming into direct contact with the external environment. Large molecules such as proteins and cells cannot cross the membrane to interact with the enclosed enzymes. Substrates that are permeable can equilibrate rapidly across the membrane to be acted on by the enzymes inside, and the product can diffuse out. Unlike the case of gel entrapment, which involves the entrapping of individual molecules of enzymes in polymer lattices, in encapsulation, any concentration, any volume, and any amount of enzymes can be enclosed within membrane envelopes of different configurations. This principle of allowing any type or concentration of enzymes, cells, or cell extracts to be encapsulated within membrane envelopes allows for an extremely large variation in the membrane composition, configuration, and content. This chapter is a brief review of the general principles and methods of preparation for encapsulation of enzymes and proteins, with emphasis on artificial cells. Only a brief review is made of other forms of encapsulation since they will be dealt with in detail in later chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apple, M., 1971, Hemodialysis against enzymes as a method of “gene replacement” in cases of inherited metabolic diseases, Proc. West. Pharmarol. Soc. 14: 125.

    Google Scholar 

  • Boguslaski, R. C., and Janik, A. M., 1971, A kinetic study of microencapsulated bovine carbonic anhydrase, Biochim. Biophys. Acta 250: 266.

    Google Scholar 

  • Broun, G., Thomas, D., Gellf, G., Domurado, D., Berjonnearu, A. M., and Gillon, T., 1973, New method for binding emzyme molecules into a water insoluble matrix—properties after insolubilization, Biotechnol. Bioeng. 15: 359.

    Article  Google Scholar 

  • Campbell, J., and Chang, T. M. S., 1975, Enzymatic recycling of coenzymes by a multi-enzyme system immobilized within semipermeable collodion microcapsules, Biochim. Biophys. Acta 397: 101.

    Google Scholar 

  • Campbell, J., and Chang, T. M. S., 1976, The recycling of NAD+ (free and immobilized) within semipermeable aqueous microcapsules containing a multi-enzyme system, Biochem. Biophys. Res. Commun. 69: 562.

    Article  Google Scholar 

  • Chambers, R. P., Ford, J. R., Allender, J. H., Baricos, W. H., and Cohen, W., 1974, Continuous processing with cofactors requiring enzymes, coenzyme retention, and regeneration in: Enzyme Engineering (E. K. Pye and L. B. Wingard, Jr., eds.), p. 195, Plenum Press, New York.

    Google Scholar 

  • Chang. T. M. S., 1957, Hemoglogin corpuscles, report of research project for B. Sc. Honours, McGill University.

    Google Scholar 

  • Chang, T. M. S., 1964, Semipermeable microcapsules, Science 146: 524.

    Article  Google Scholar 

  • Chang, T. M. S., 1965, Semipermeable aqueous microcapsules, Ph.D. thesis, McGill University.

    Google Scholar 

  • Chang, T. M. S., 1966, Semipermeable aqueous microcapsules (“artificial cells”): with emphasis on experiments in an extracorporeal shunt system, Trans. Amer. Soc. ArtifecialInternal Organs 12: 13.

    Google Scholar 

  • Chang, T. M. S., 1969a, Clinical potential of enzyme technology, Science Tools 16: 33.

    Google Scholar 

  • Chang, T. M. S., 1969b, Lipid-coated spherical ultrathin membranes of polymer or cross-linked protein as possible cell membrane models, Federation Proc. 28: 461.

    Google Scholar 

  • Chang, T. M. S., 1971, Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde, Biochem. Biophys. Res. Commun. 44: 1531.

    Article  Google Scholar 

  • Chang, T. M. S., 1972a, Artificial Cells, Charles C. Thomas, Publisher, Springfield, Ill.

    Google Scholar 

  • Chang, T. M. S., 1972b, A new approach to separation using semipermeable microcapsules (artificial cells): combined dialysis, catalysis, and absorption, in: “Recent Development in Separation Science,” Vol. I ( N. N. Li, ed.), p. 203, CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Chang, T. M. S., 1973, L-asparaginase immobilized within semipermeable microcapsules: in-vitro and in-vivo stability, Enzyme 14: 95.

    Google Scholar 

  • Chang, T. M. S., 1974, A comparison of semipermeable microcapsules and standard dialysers for use in separation, Separ. Purif Methods 3: 245.

    Article  Google Scholar 

  • Chang, T. M. S., 1976, Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines and biologicals, J. Bioengineering,(in press).

    Google Scholar 

  • Chang, T. M. S., and Poznansky, M. J., 1968, Semipermeable aqueous microcapsules (artificial cells): V. Permeability characteristics, J. Biomed. Mater. Res. 2: 187.

    Article  Google Scholar 

  • Chang, T. M. S., MacIntosh, F. C., and Mason, S. G., 1963, Semipermeable aqueous microcapsules, Proc. Can. Federation Biol. Soc. 6: 16.

    Google Scholar 

  • Chang, T. M. S., MacIntosh, F. C., and Mason, S. G., 1966, Semipermeable aqueous microcapsules: I. Preparation and properties, Can. J. Physiol. Pharmacol. 44: 115.

    Article  Google Scholar 

  • Chang, T. M. S., Johnson, L. J., and Ransome, O., 1967, Semipermeable aqueous microcapsules: IV. Nonthrombogenic microcapsules with heparin-complexed membranes, Can. J. Physiol. Pharmacol. 45: 705.

    Article  Google Scholar 

  • Choi, P. S. K., and Fan, L. T., 1973, Transient behaviour of encapsulated enzyme reactor systems, J. Apps. Chem. Biotechnol. 23: 531.

    Article  Google Scholar 

  • Dinelli, D., 1972, Fibre-entrapped enzymes, Process Biochem. 7: 9.

    Google Scholar 

  • Gardner, D. L., Falb, R. D., Kim, B. C., and Emmerling, D. C., 1971, Possible uremic detoxification via oral-ingested microcapsules, Trans. Amer. Soc. Artificial Internal Organs 17: 239.

    Google Scholar 

  • Gregoriadis, G., Leathwood, P. D., and Ryman, B. E., 1971, Enzyme-entrapment in liposomes, FEBS Letters 14: 95.

    Article  Google Scholar 

  • Ihler, G. M., Glew, R. H., and Schnure, F. W., 1973, Enzyme loading of erythrocytes, Proc. Natl. Acad. Sci. U.S. 70: 2663.

    Article  Google Scholar 

  • Kitajima, M., and Kondo, A., 1971, Fermentation without multiplication of cells using microcapsules that contain zymase complex and muscle enzyme extract, Bull. Chem. Soc. Japan 44: 3201.

    Article  Google Scholar 

  • Kitajima, M., Miyano, S., and Kondo, A., 1969, Studies on enzyme-containing microcapsules, J. Chem. Soc. Japan 72: 493.

    Google Scholar 

  • Marconi, W., Guilinelli, S., and Morisi, F., 1974, Fiber-entrapped enzymes, in: Insolubilized Enzymes ( M. Salmona, C. Saronio, and S. Garattini, eds.), p. 51, Raven Press, New York.

    Google Scholar 

  • May, S. W., and Landgraff, L. M., 1975, Cofactor recycling in liquid-membrane-enzyme systems, Biochem. Biophys. Res. Commun. 68: 786.

    Article  Google Scholar 

  • May, S. W., and Li, N. N., 1972, The immobilization of urease using liquid—surfactant membranes, Biochem. Biophys. Res. Commun. 47: 1179.

    Article  Google Scholar 

  • Mogensen, A. O., and Vieth, W. R., 1973, Mass transfer and biochemical reaction with semipermeable microcapsules, Biotechnol. Bioeng. 15: 467.

    Article  Google Scholar 

  • Mori, T., Tosa, T., and Chibata, I., 1973, Enzymatic properties of microcapsules containing asparagi-nase, Biochim. Biophys. Acta 321: 653.

    Google Scholar 

  • Mosbach, K., and Mosbach, R., 1966, Entrapment of enzymes and micro-organisms in synthetic crosslinked polymers and their applications in volumn techniques, Acta Chem. Scan. 20: 2807.

    Article  Google Scholar 

  • Mueller, P., and Rudin, D. O., 1968, Resting and action potentials in experimental lipid membranes, J. Theoret. Biol. 18: 222.

    Article  Google Scholar 

  • Ostergaard, J. C. W., and Martiny, S. C., 1973, Immobilization of /3-galactosidase through encapsulation in water insoluble microcapsules, Biotchnol. Bioeng. 15: 561.

    Article  Google Scholar 

  • Rogers, S., 1968, Dialysis against enzymes, Nature 220: 1321.

    Article  Google Scholar 

  • Rony, P. K., 1971, Multiphase catalysts: II. Hollow fibre catalysts, Biotechnol. Bioeng. 13: 431.

    Article  Google Scholar 

  • Rosenthal, A. M., and Chang, T. M. S., 1971, The effect of ialinomycin on the movement of rubidium across lipid coated semipermeable microcapsules, Proc. Can. Federation Biol. Soc. 14: 44.

    Google Scholar 

  • Sessa, G., and Weissman, G., 1970, Incorporation of lysozyme into liposomes, J. Biol. Chem. 245: 3295.

    Google Scholar 

  • Shiba, M., Tomioka, S., Koishi, M., and Kondo, T., 1970, Studies on microcapsules: V. Preparation of polyamide microcapsules containing aqueous protein solution, Chem. Pharm. Bull. (Tokyo) 18: 803.

    Article  Google Scholar 

  • Sparks, R. E., Salemme, R. M., Meier, P. M., Litt, M. H., and Lindan, O., 1969, Removal of waste metabolites in uremia by microencapsulated reactants, Trans. Amer. Soc. Artificial Internal Organs 15: 353.

    Google Scholar 

  • Sundaram, P. V., 1973, The kinetic properties of microencapsulated urease, Biochim. Biophys. Acta 321: 319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Chang, T.M.S. (1977). Encapsulation of Enzymes, Cell Contents, Cells, Vaccines, Antigens, Antiserum, Cofactors, Hormones, and Proteins. In: Chang, T.M.S. (eds) Biomedical Applications of Immobilized Enzymes and Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2610-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2610-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2612-0

  • Online ISBN: 978-1-4684-2610-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics