Skip to main content

Abstract

The three-dimensional conformation of an enzyme has an important effect on its catalytic action. Consequently, when immobilizing an enzyme, it is necessary to use such methods and chemicals that the functional tertiary structure will not be affected. Physical entrapment of an enzyme in a gel lattice is an immobilization method in which no modification of the amino acid residues is needed, and which offers the advantage of reaction conditions usually so mild that few significant changes in the enzyme structure occur. A great advantage lies in the fact that the presence of protective and stabilizing agents does not affect the yield of the entrapped material. The method has a broad applicability to most enzymes, purified as well as crude extracts, to whole cells (e.g., microorganisms) and even to culture broths containing the desired enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauman, E. K., Goodson, L. H., Guilbault, G. G., and Kramer, D. N., 1965, Preparation of immobilized cholinesterase for use in analytical chemistry, Anal. Chem. 37:1378.

    Article  Google Scholar 

  • Beck, S. R., and Rase, H. F., 1973, Encapsulated enzyme: a glucoamylase copolymer system, Ind. Eng. Chem. Prod. Res. Develop. 12:260.

    Article  Google Scholar 

  • Bernfeld, P., and Wan, J., 1963, Antigens and enzymes made insoluble by entrapping them into lattice of synthetic polymers, Science 142:678.

    Article  Google Scholar 

  • Bernfeld, P., Bieber, R. E., and MacDonnell, P. C., 1968, Water-insoluble enzymes: arrangement of aldolase within an insoluble carrier, Arch. Biochem. Biophys. 127:779.

    Article  Google Scholar 

  • Bernfeld, P., Bieber, R. E., and Watson, D. M., 1969, Kinetics of water-insoluble phosphoglycerate mutase, Biochim. Biophys. Acta 191:570.

    Google Scholar 

  • Broun, G., Thomas, D., Gellf, G., Domurado, D., Berjonneau, A. M., and Guillon, C. 1973, New methods for binding enzyme molecules into a water-insoluble matrix: properties after insolubilization, Biotechnol. Bioeng. 15:359.

    Article  Google Scholar 

  • Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968a, Enzyme entrapment within hydrophobic and hydrophilic matrices, J. Biomed. Mater. Res. 2:231.

    Article  Google Scholar 

  • Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968b, Lattice entrapment of glycolytic enzymes, J. Chromatog. 35:103.

    Article  Google Scholar 

  • Cavins, J. F., and Friedman, M., 1968, Specific modification of protein sulfhydryl groups with a,ß-unsaturated compounds, J. Biol. Chem. 243:3357.

    Google Scholar 

  • Chibata, I., Tosa, T., and Sato, T., 1974, Immobilized aspartase-containing microbial cells: preparation and enzymatic properties, Apps. Microbiol. 27:878.

    Google Scholar 

  • Constantinides, A., Vieth, W. R., and Fernandes, P. M., 1973, Characterization of glucose oxidase immobilized on collagen, Mol. Cell. Biochem. 1:127.

    Article  Google Scholar 

  • Dahlqvist, A., Mattiasson, B., and Mosbach, K., 1973, Hydrolysis of ß-galactosidases using polymerentrapped lactase: a study towards producing lactose-free milk, Biotechnol. Bioeng. 15:395.

    Article  Google Scholar 

  • Degani, Y., and Miron, 1970, Immobilization of cholinesterase in cross-linked polyacrylamide, Biochim. Biophys. Acta 212:362.

    Google Scholar 

  • Dickey, F. H., 1955, Specific adsorption, J. Phys. Chem. 59:695.

    Article  Google Scholar 

  • Duijn, P., Pascoe, E., and van der Ploeg, M., 1967, Theoretical and experimental aspects of enzyme determination in a cytochemical model system of polyacrylamide films containing alkaline phos® phatase, J. Histochem. Cytochem. 15:631.

    Article  Google Scholar 

  • Fawcett, J. S., and Morris, C. J. O. R., 1966, Molecular-sieve chromatography of proteins on granulated polyacrylamide gels, Separ. Sci. 1:9.

    Article  Google Scholar 

  • Franks, N. E., 1971, Catabolism of L-arginine by entrapped Streptococcus faecalis ATCC 8043, Biochim. Biophys. Acta 252:246.

    Article  Google Scholar 

  • Gestrelius, S., Mattiasson, B., and Mosbach, K., 1973, On the regulation of the activity of immobilized enzyme: microenvironmental effects of enzyme-generated pH-changes, Eur. J. Biochem. 36:89.

    Article  Google Scholar 

  • Guilbault, G. G., 1971, Enzyme electrode probes, Pure Apps. Chem. 25:727.

    Article  Google Scholar 

  • Guilbault, G. G., and Das, J., 1970, Immobilization of cholinesterase and urease, Anal. Biochem. 33:341.

    Article  Google Scholar 

  • Harrison, R. A. P., 1974, The detection of hexokinase, glucosephosphate isomerase and phosphoglucomutase activities in polyacrylamide gels after electrophoresis: a novel method using immobilized glucose-6-phosphate dehydrogenase, Anal. Biochem. 61:500.

    Article  Google Scholar 

  • Hicks, G. P., and Updike, S. J., 1966, The preparation and characterization of lyophilized polyacrylamide enzyme gels for chemical analysis, Anal. Chem. 38:726.

    Article  Google Scholar 

  • Hinberg, I., and O’Driscoll, K. F., 1975, Preparation and kinetic properties of gel entrapped urate oxidase, Biotechnol. Bioeng. 17:1435.

    Article  Google Scholar 

  • Hinberg, I., Kapoulas, A., Korus, R., and O’Driscoll, K. F., 1974a, Gel entrapment of enzymes: kinetic studies of immobilized glucose oxidase, Biotechnol. Bioeng. 16:159.

    Article  Google Scholar 

  • Hinberg, I., Korus, R., and O’Driscoll, K. F., 1974b, Gel entrapped enzymes: kinetic studies of immobilized β-galactosidase, Biotechnol. Bioeng. 16:943.

    Article  Google Scholar 

  • Hjertén, S., 1962, “Molecular sieve” chromatography on polyacrylamide gels, prepared according to a simplified method, Arch. Biochem. Biophys. Suppl. 1:147.

    Google Scholar 

  • Horvath, C., 1974, Pellicular immobilized enzymes, Biochim. Biophys. Acta 358:164.

    Google Scholar 

  • Inada, Y., Hirose, S., Okada, M., and Mihama, H., 1975, Immobilized L-asparaginase EC 3.5.1.1 embedded in fibrin polymer, Enzyme 20:188.

    Google Scholar 

  • Jaworek, D., 1974, New immobilization techniques and supports, in: Enzyme Engineering (E. K. Pye, and L. B. Wingard, Jr., eds.), Vol. 2, pp. 105–113. Plenum Press, New York.

    Google Scholar 

  • Johansson, A.-C., and Mosbach, K., 1974a, Acrylic copolymers as matrices for the immobilization of enzymes: I. Covalent binding or entrapping of various enzymes to bead-formed acrylic copolymers, Biochim. Biophys. Acta 370:339.

    Google Scholar 

  • Johansson, A.-C., and Mosbach, K., 1974b, Acrylic copolymers as matrices for the immobilization of enzymes: II. The effect of a hydrophobic microenvironment on enzyme reactions studied with alcohol dehydrogenase immobilized to different acrylic coploymers, Biochim. Biophys. Acta 370:348.

    Google Scholar 

  • Johnson, P., and Whateley, T. L., 1971, On the use of polymerizing silica gel systems for the immobilization of trypsin, J. Colloid Interface Sci. 37:557.

    Article  Google Scholar 

  • Karube, I., and Suzuki, S., 1972, Electrochemical preparation of urease—collagen membrane, Biochem. Biophys. Res. Commun. 47:51.

    Article  Google Scholar 

  • Kawashima, K., and Umeda, K., 1974, Immobilization of enzymes by radiopolymerization of acrylamide, Biotechnol. Bioeng. 16:609.

    Article  Google Scholar 

  • Koch-Schmidt, A.-C., 1976, Thesis. University of Lund. Reprocentralen. Koch-Schmidt and Mosbach, to be published.

    Google Scholar 

  • Korus, R. A., and O’Driscoll, K. F., 1974, The effects of intraparticle diffusion on the kinetics of gel entrapped enzymes, Can. J. Chem. Eng. 52:775.

    Article  Google Scholar 

  • Korus, R. A., and O’Driscoll, K. F., 1975, The influence of diffusion of the apparent rate of denaturation of gel entrapped enzymes, Biotechnol. Bioeng. 17:441.

    Article  Google Scholar 

  • Köstner, A., 1974, Apparatus for Production of Spherical Microbeads. USSR Pat. 458323 (C1.B Olj 2/ 06), 15.07.1974, Appl. 26.03.1973; from Otkytiya,Izobret., Prom. Obraztsy, Tovarnye Znaki 4 7 (1975).

    Google Scholar 

  • Köstner, A., and Mandel, M., 1977, A method for continuous production of polyacrylamide-entrapped enzyme beads, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, Academic Press, Inc., New York, in press.

    Google Scholar 

  • Köstner, A., Kivisilla, K., Mandel, M., and Sümer, E., 1973, Method for Production of Matrix Bound Enzyme, USSR. Pat. 414301 (C1.C. 12d 13/10), 29.05.1973, Appl. 30.10.1971; from Otkrytiya, Izobret.,Prom. Obraztsy, Tovarnye Znaki 5 92 (1974).

    Google Scholar 

  • Maeda, H., Suzuki, H., and Yamauchi, A., 1973, Preparation of immobilized enzymes by electron-beam irradiation, Biotechnol. Bioeng. 15:827.

    Article  Google Scholar 

  • Maeda, H., Suzuki, H., Yamauchi, A., and Sakimae, A., 1975, Preparation of immobilized enzymes from acrylic monomers under y-ray irradiation, Biotechnol. Bioeng. 17:119.

    Article  Google Scholar 

  • Montalvo, J., Jr., and Guilbault, G. G., 1969, Sensitized cation selective electrode, Anal. Chem. 41:1897.

    Article  Google Scholar 

  • Mori, T., Sato, T., Tetsuva, T., and Chibata, I., 1972, Studies on immobilized enzymes: X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice, Enzymologia 43:213

    Google Scholar 

  • Mosbach, K., 1970, Matrix-bound enzymes: I. The use of different acrylic copolymers as matrices, Acta Chem. Scand. 24:2082.

    Google Scholar 

  • Mosbach, K., and Larsson, P.-O., 1970, Preparation and application of polymer-entrapped enzymes and microorganisms in microbial transformation processes with special reference to steroid 11-ß-hydroxylation and 0’-2-dehydrogenation, Biotechnol. Bioeng. 12:19.

    Article  Google Scholar 

  • Mosbach, K., and Mattiasson, B., 1970, Matrix-bound enzymes: II. Studies on a matrix-bound two-enzyme system, Acta Chem. Scarul. 24:2093.

    Article  Google Scholar 

  • Mosbach, K., and Mosbach, R., 1966, Entrapment of enzymes and microorganisms in synthetic cross-linked polymers and their application in column techniques, Acta Chem. Scand. 20:2807.

    Article  Google Scholar 

  • Nadler, H. I.., and Updike, S. J., 1974, Gel entrapment of enzymes, Enzyme 18:150.

    Google Scholar 

  • Nilsson, H., Mosbach, K., and Mosbach, R., 1972, The use of bead polymerization of acrylic monomers for immobilization of enzymes, Biochim. Biophys. Acta 268:253.

    Google Scholar 

  • Nilsson, H., Akerlund, A.-C., and Mosbach, K., 1973, Determination of glucose, urea and penicillin using enzyme-pH-electrodes, Biochim. Biophys. Acta 320:529.

    Article  Google Scholar 

  • O’Driscoll, K. F., Izu, M., and Korns, R., 1972, Gel-entrapment of enzymes, Biotechnol. Bioeng. 14:847.

    Article  Google Scholar 

  • O’Driscoll, K. F., 1977, “techniques of enzyme entrapment in gels, in: Methods in Enzymology (Mosbach, K., ed.), Academic Press, Inc., New York, Vol. 44, in press.

    Google Scholar 

  • Ohno, Y., and Stahmann, M. A., 1971, Polyacrylamide derivatives of amino acid acylase and trypsin, Macromolecules 4:350.

    Article  Google Scholar 

  • Paus, P. N., 1971, Solubilization of polyacrylamide gels for liquid scintillation counting, Anal. Biochem. 42:372.

    Article  Google Scholar 

  • Pennington, S. N., Brown, H. D., Patel, A. B., and Knowles, C. O., 1968a, Properties of matrix supported acetylcholinesterase, Biochim. Biophys. Acta 167:479.

    Google Scholar 

  • Pennington, S. N., Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968b, Silastic entrapment of glucose oxidase-peroxidase and acetylcholin esterase, J. Biomed. Mater. Res. 2:443.

    Article  Google Scholar 

  • Richards, E. G., and Temple, C. J., 1971, Some properties of polyacrylamide gels, Nature Phys. Sci. 230:92.

    Google Scholar 

  • Spackman, D. H., Stein, W. H., and Moore, S., 1958, Automatic recording apparatus for use in the chromatography of amino acids, Anal. Chem. 30:1190.

    Article  Google Scholar 

  • Srere, I. A., Mattiasson, B., and Mosbach, K., 1973, An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria, Proc. Natl. Acad. Sci. U.S. 70:2534.

    Article  Google Scholar 

  • Suzuki, S., Sonobe, N., Karube, I., and Aizawa, M., 1974, Electrochemical preparation of uricase-collagen membrane, Chem. Letters 1:9.

    Article  Google Scholar 

  • Turkovh, J., Hulxílkovh, O., Kfivükovâ, M., and Coupek, J., 1973, Affinity chromatography on hydroxyalkyl methacrylate gels: I. Preparation of immobilized chymotrypsin and its use in the isolation of proteolytic inhibitors, Biochim. Biophys. Acta 322:1.

    Google Scholar 

  • Updike, S. J., and Hicks, G. P., 1967a, The enzyme electrode, Nature 214:986.

    Article  Google Scholar 

  • Updike, S. J., and Hicks, G. P., 1967b, Reagentless substrate analysis with immobilized enzymes, Science 158:270.

    Article  Google Scholar 

  • Vesta, B., and Usdin, V., 1963, Melpar Inc., Falls Church, Va., Final Report, Contract DA 18–108–405CML–828, Section 3.3.4, p. 3.102 (Okt 1963).

    Google Scholar 

  • Wang, S. S., and Vieth, W. R., 1973, Collagen-enzyme complex membranes and their performance in biocatalytic modules, Biotechnol. Bioeng. 15:93.

    Article  Google Scholar 

  • Wieland, T., Determann, H., and Bünnig, K., 1966, Über unlösliche, in polyacrylamidegel fixierte enzyme, Z. Naturforsch. 21:1003.

    Google Scholar 

  • Wold, F., 1973, Chemical modification of enzymes, in: Enzyme Therapy in Genetic Diseases, Birth Defects (Original Article Series, Vol. 9), (R. J. Desnick, R. W. Bernlohr, and W. Krivit, eds.) p. 46, The Williams & Wilkins Company, Baltimore.

    Google Scholar 

  • Young, R. W., and Fulhorst, H. W., 1965, Recovery of S35 radioactivity from protein-bearing polyacrylamide gel, Anal. Biochem. 11:389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Koch-Schmidt, AC. (1977). Gel-Entrapment of Enzymes. In: Chang, T.M.S. (eds) Biomedical Applications of Immobilized Enzymes and Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2610-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2610-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2612-0

  • Online ISBN: 978-1-4684-2610-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics