Skip to main content

Possible Roles of Enzymes in Development of a Fuel Cell Power Source for the Cardiac Pacemaker

  • Chapter
Biomedical Applications of Immobilized Enzymes and Proteins

Abstract

Many types of “permanent” pacemaker devices and techniques have evolved since successful clinical application was first reported (Senning, 1959; Chardack et al.,1960; Zoll et al.,1961). These efforts have had an enormous impact upon the treatment of cardiac arrhythmias; however, they also have brought a host of new problems for the management of patients receiving pacers (Grendahl et al.,1969; Goldstein et al., 1970; Barold, 1973). Among the problems is that of providing a suitable power source for long-term trouble-free pacemaker function. This chapter will be devoted largely to discussion of one type of device potentially capable of solving this problem, namely, the biofuel or, more specifically, bioautofuel cell. Particular emphasis will be given to the role that enzyme catalysts might play. The term “bioautofuel cell” refers to a biofuel cell which can be implanted in the host and which then relies on the host for the delivery of fuel and the removal of wastes. Such an implantable fuel cell may incorporate enzymes to catalyze one or more of the reactions or to produce the fuel. A general introduction to cardiac pacing and a brief description of alternate power sources is included to place the enzyme-containing systems in perspective.

The Heart ... moves of itself and does not stop unless for ever.

Leonardo da Vinci

Dell’Anatonia, ca. 1489 a.d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., and Liu, C. C., 1974a, Hyaluronidase-membrane for an implantable fuel cell, Amer. Soc. Artificial Internal Organs, Abstr. 3: 2.

    Google Scholar 

  • Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., and Liu, C. C., 1974b, A sepharose membrane bound hyaluronidase to process extracellular fluid for the implantable bioautofuel cell, Proc. 27th Ann. Conf. Eng. Med. Biol., Philadelphia, p. 200.

    Google Scholar 

  • Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., Liu, C. C., Todd, R. C., and Weiner, S. B., 1976, Hyaluronidase-bound membrane as a biomaterial for implantable fuel cells, J. Biomed. Mater. Res. 10: 283.

    Article  Google Scholar 

  • Appleby, A.J., Ng, D. Y. C., Wolfson, S. K., Jr., and Weinstein, H., 1969, An implantable biological fuel cell with an air-breathing cathode, Proc. 4th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 22–26.

    Google Scholar 

  • Austin, L. G., 1967, Fuel Cells: A Review of Government-Sponsored Research 1950–1964, National Aeronautics and Space Administration Rept SP-120, Government Printing Office, Washington, D.C.

    Google Scholar 

  • Barold, S. S., 1973, Modern concepts of cardiac pacing, Heart & Lung 2: 238–252.

    Google Scholar 

  • Batzold, J. S., and Beltzer, M., 1969, Feasibility studies—biological fuel cell, Proc. Artificial Heart Program Conf., Washington, D.C.; pp. 817–824.

    Google Scholar 

  • Bentley, R., 1963, Glucose oxidase, in: The Enzymes (P. D. Boyer, H. Lardy, K. Myrback, eds.), 2nd ed., Vol. 7, pp. 567–586, Academic Press, Inc., New York.

    Google Scholar 

  • Bessman, S. P., and Schultz, R. D., 1973, Prototype glucose oxygen sensor for the artificial pancreas, Trans. Amer. Soc. Artificial Internal Organs 19: 361.

    Article  Google Scholar 

  • Bocciarelli, C. V., 1969, On the design of catalysts for biological fuel cells, Proc. Artificial Heart Program Conf, Washington, D.C., pp. 861–868.

    Google Scholar 

  • Bright, H. J., and Gibson, Q. H., 1967, The oxidation of 1-deuterated glucose by glucose oxidase, J. Biol. Chem. 242: 994.

    Google Scholar 

  • Brimacombe, J. S., 1964, Hyaluronic acid, in: Mucopolysaccharides, pp. 43–63, American Elsevier Publishing Co., Inc., New York.

    Google Scholar 

  • Cenek, M., 1969, Biochemical Fuel Cells, U.S. Air Force Rept. AD694072 (translated from Chem. Listy 62: 927–974, 1968 ).

    Google Scholar 

  • Chardack, W. M., Gage, A. A., and Greatbatch, W., 1960, A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block, Surgery 48: 643.

    Google Scholar 

  • Clark, L. C., Jr., 1972, A family of polarographic enzyme electrodes and the measurement of alcohol, in: Enzyme Engineering (L. B. Wingard, Jr., ed.), pp. 377–394, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Del Duca, M. G., 1963, Direct and indirect bioelectrochemical energy conversion system, in: Develop. Ind. Microbial., pp. 81–91, Plenum Press, New York.

    Google Scholar 

  • Dohan, L. A., Yao, S. J., and Wolfson, S. K., Jr., 1971, An enzymatic converter for the implanted fuel cell, Trans. Amer. Soc. Artificial Internal Organs 17: 411–414.

    Google Scholar 

  • Drake, R. F., 1968, Implantable Fuel Cell for an Artificial Heart, U.S. Government Publication PB177695 (February).

    Google Scholar 

  • Drake, R. F., 1969, Implantable fuel cell for an artificial heart, Proc. Artificial Heart Program Conf., Washington, D.C., pp. 869–880.

    Google Scholar 

  • Drake, R. F., Kusserow, B. K., Messinger, S., and Matsuda, S., 1970, A tissue implantable fuel cell power supply, Trans. Amer. Soc. Artificial Internal Organs 16: 199–205.

    Google Scholar 

  • Eisenberg, L., Mauro, A., and Glenn, W. W. L., 1961, Transistorized pacemaker for remote stimulation of the heart by radio-frequency transmission, IREE Trans. Bio-Med. Electron. 8: 253.

    Article  Google Scholar 

  • Fishman, J. H., and Henry, J. F., 1969, Oxygen reduction on gold-palladium alloys in neutral media, Proc. Artificial Heart Program Conf, Washington, D.C., pp. 825–838.

    Google Scholar 

  • Fontaine, G., Kevorkian, M., and Welti, J., 1968, Thresholds for electrical stimulation, Ann. Cardiol. Angiol. 17: 251.

    Google Scholar 

  • Foord, A. G., Youngberg, G. E., and Wetmore, V., 1929, The chemistry and cytology of serous fluids, J. Lab. Clin. Med. 14: 417–428.

    Google Scholar 

  • Giner, J., and Malachesky, P., 1969, Anodic oxidation of glucose, Proc. Artificial Heart Program Conf. Washington, D.C., pp. 839–848.

    Google Scholar 

  • Glenn, W. W. L., Mauro, A., Longo, E., Lavietes, P. H., and MacKay, F. J., 1959, Remote stimulation of the heart by radiofrequency transmission, New Engl. J. Med. 261: 948.

    Article  Google Scholar 

  • Glenn, W. W. L., Furman, S., Gordon, A. J., Escher, D. J. W., and van Heeckeren, D. W., 1966, Radiofrequency-controlled catheter pacemaker, New Engl. J. Med. 275: 137–140.

    Article  Google Scholar 

  • Goldstein, S., Moss, A. J., Rivers, R. J., Jr., and Weiner, R. S., 1970, Transthoracic and transvenous pacemakers: A comparative clinical experience with 131 implantable units, Brit. Heart J. 32: 3545.

    Article  Google Scholar 

  • Grendahl, H., Sivertssen, E., Bay, G., and Bergan, F., 1969, Permanent cardiac pacing, Acta Med. Scand. 185: 139–143.

    Article  Google Scholar 

  • Guilbault, G. G., 1972, Analytical uses of immobilized enzymes, in Enzyme Engineering (L. B. Wingard, Jr., ed.), pp. 361–376, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Hixson, J. D., and Laurens, P., 1972, Design criteria and two-year clinical results of Pu-238 fueled demand pacemaker, Proc. 7th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 765–770.

    Google Scholar 

  • Huffman, F. N., and Norman, J. C., 1974, Nuclear fueled cardiac pacemakers, Chest 65: 667–672.

    Article  Google Scholar 

  • Keilin, D., and Hartree, E. F., 1948, Properties of glucose oxidase (Notatin), Biochem. J. 42: 221.

    Google Scholar 

  • Konikoff, J. J., 1966, In-vivo experiments with bioelectric potentials, Aerospace Med. 37: 824–828.

    Google Scholar 

  • Lahoda, E. J., Liu, C. C., and Wingard, L. B., Jr., 1975, Electrochemical evaluation of glucose oxidase immobilized by different methods, Biotechnol. Bioeng. 17: 413.

    Article  Google Scholar 

  • Laurens, P., 1970, French nuclear-powered pacemaker program, Trans. Amer. Nucl. Soc. 13: 508.

    Google Scholar 

  • Lewin, G., Myers, G., Parsonnet, V., and Zucher, I. R., 1967, A non-polarizing electrode for physiological stimulation, Trans. Amer. Soc. Artificial Internal Organs 13: 345–349.

    Google Scholar 

  • Lewin, G., Myers, G. H., Parsonnet, V., and Raman, K. V., 1968, An improved piezoelectric biological power source for cardiac pacemakers, Trans. Amer. Soc. Artificial Internal Organs 14: 215–217.

    Google Scholar 

  • Lillehei, C. W., Gott, V. L., Hodges, P. C., Jr., Long, D. M., and Bakken, E. E., 1960, Transistor pacemaker for treatment of complete atrioventricular dissociation, J. Amer. Med. Assoc. 172: 2006–2010.

    Article  Google Scholar 

  • Linker, A., Meyer, K., and Weissman, B., 1955, Enzymatic formation of monosaccharides from hyaluronate, J. Biol. Chem. 213: 237.

    Google Scholar 

  • Lown, B., and Kosowsky, B. D., 1970, Artificial cardiac pacemakers, New Engl. J. Med. 283: 907–916.

    Article  Google Scholar 

  • Martinis, A. J., 1975, Initial U.S. experience with promethium-147 fueled cardiac pacemakers, in: Advances in Pacemaker Technology ( M. Schaldach and S. Furman, eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Massie, H. L., Racine, P. J., Pasker, R., Hahn, A. W., and Sun, H. H., 1968, Study of power generating implantable electrodes, Med. Biol. Eng. 6: 503–516.

    Article  Google Scholar 

  • Mitchell, W., Jr., 1963, Fuel Cell, Academic Press, Inc., New York.

    Google Scholar 

  • Morgan, W. Y. J., and Elson, L. A., 1934, A colorimetric method for the determination of Nacetylglucosamine and N-acetylchondrosamine, Biochem. J. 28: 988.

    Google Scholar 

  • Parsonnet, V., Zucker, I. R., Gilbert, G., Lewin, G., and Myers, G., 1969, Clinical use of a new transvenous electrode, Ann. N.Y. Acad. Sci. 167: 756.

    Article  Google Scholar 

  • Parsonnet, V., Myers, G. H., Gilbert, L., and Zucker, I. R., 1975, Clinical experience with the nuclear pacemaker, Surgery 78: 776–786.

    Google Scholar 

  • Pennington, S. N., Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968, Silastic entrapment of glucose oxidase-peroxidase and acetylcholine esterase, J. Biomed. Mater. Research 2: 443.

    Article  Google Scholar 

  • Porath, J., Axen, R., and Ernback, S., 1967, Chemical coupling of proteins to agarose, Nature 215: 1491–1492.

    Article  Google Scholar 

  • Preston, T., Judge, R., Lacchesi, B. and Bowers, D., 1966, Myocardial threshold in patients with artificial pacemakers, Amer. J. Cardiol. 18: 83.

    Article  Google Scholar 

  • Purdy, D. L., McGovern, G. J., and Smyth, N., 1975, A new radioisotope-powered cardiac pacer, J. Thoracic Cardiovascular Surg. 69: 82–91.

    Google Scholar 

  • Racine, P. J., and Massie, H., 1966, An experimental internally powered cardiac pacemaker, Med. Res. Eng. 5: 24–27.

    Google Scholar 

  • Rao, J. R., and Richter, G., 1974, Implantable bioelectrochemical power sources, Naturwissenschaften 61: 200.

    Article  Google Scholar 

  • Rasor, N. S., Spickler, J. W., and Clabaugh, T. L., 1972, Comparison of power sources for advanced pacemaker applications, Proc. 7th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 757–760.

    Google Scholar 

  • Reynolds, L. W., 1963, Utilization of Bioelectric Potentials, Ames Research Center, NASA, Quarterly Report (September and November 1963 ).

    Google Scholar 

  • Reynolds, L. W., 1964, Utilization of Bioelectric Potentials, Ames Research Center, NASA, Quarterly Report (February 1964).

    Google Scholar 

  • Roy, O. Z., 1971, Biological energy sources: a review, Biomed. Eng. 6: 250–256.

    Google Scholar 

  • Roy, O. Z., and Wehnert, R. W., 1966, Keeping the heart alive with a biological battery, Electronics 105: 107.

    Google Scholar 

  • Schaldach, M., 1969, Bioelectric energy sources for cardiac pacing, Ann. N.Y. Acad. Sci. 167: 1016–1024.

    Article  Google Scholar 

  • Schaldach, M., 1970, Klinische Erfahrungen und experimentelle Ergelnisse über korpereigene electrochemical Energiequellen, Z. Exptl. Chirurgie 3: 200–216.

    Google Scholar 

  • Schultz, H. E., and Heremans, J. F., 1966, Molecular Biology and Human Proteins, Vol. I: Nature and Metabolism of Extracellular Protein, Sec. IV: Proteins of Extravascular Fluids, Chap. I, American Elsevier Publishing Co., Inc., New York.

    Google Scholar 

  • Senning, A., 1959, Discussion of Goot, B., Miller, F. A.: Prevention of posthypercapneic ventricular fibrillation in dogs, J. Thoracic Cardiovascular Surg. 38: 630–642.

    Google Scholar 

  • Strohl, C. L., Scott, R. D., Frezel, W. J. and Wolfson, S. K., Jr., 1966, Studies of bioelectric power sources for cardiac pacemakers, Trans. Amer. Soc. Artificial Internal Organs 12: 318–326.

    Google Scholar 

  • Takahashi, F., Aizawa, M., Mizuguchi, J., and Suzuki, S., 1970, Cell with NADP—NADPH Redox system, Kogyo Kagaku Zasshi 73: 908.

    Article  Google Scholar 

  • Tseung, A. C. C., King, W. J., and Wan, B. Y. C., 1971, An encapsulated, implantable metal–oxygen cell as a long-term power source for medical and biological applications, Med. Biol. Eng. 9: 175–184.

    Article  Google Scholar 

  • Tyers, G. F. O., Torman, H. A., Hughes, H. C., 1974, Comparatibe studies of “state of the art” and presently used clinical pacemaker electrodes, J. Thoracic Cardiovascular Surg. 67: 849–856.

    Google Scholar 

  • Varriale, P., and Naclerio, E. A., 1975, Sutureless electrode for permanent ventricular pacing—observations and results of a three year follow-up study, Circulation, Suppl. II, 52: 252.

    Google Scholar 

  • Wan, B. Y. C., and Tseung, A. C. C., 1974, Some studies related to electricity generation from biological fuel cells and galvanic cells, in vitro and in vivo, Med. Biol. Eng. 12: 14–28.

    Article  Google Scholar 

  • Wan, B. Y. C., Tseung, A. C. C., Kenny, J., and Wilds, A., 1972, The development and long-term implantation studies of an encapsulated, implantable aluminum/oxygen cell as an in vivo power source, Proc. 7th Intersoc. Energy Conversion Eng. Conf., San Diego, pp. 745–751.

    Google Scholar 

  • Weibel, M. K., Dritschilo, W., Bright, H. J., and Humphrey, A. E., 1973, Immobilized enzymes: a prototype apparatus for oxidase enzymes in chemical analysis utilizing covalently bound glucose oxidase, Anal. Biochem. 52: 402.

    Article  Google Scholar 

  • Weissmann, B., Meyer, K., Sampson, P., and Linker, A., 1954, Isolation of oligosaccharides enzymatically produced from hyaluronic acid,,. Biol. Chem. 208: 417.

    Google Scholar 

  • Weissmann, B., Hadjiioannou, S., and Tornheim, J., 1964, Oligosaccharase activity of ß-N-acetyl-Dglucosaminidase of beef liver, J. Biol Chem. 239: 59.

    Google Scholar 

  • West, R., and Clarke, D. H., 1938, The concentration of glucosamine in normal and pathological sera, J. Clin. Invest. 17: 173.

    Article  Google Scholar 

  • White, A., Handler, P., and Smith, E. L., 1959, Principles of Biochemistry, pp. 54–57, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Widmann, W. D., Glenn, W. W. L., Eisenberg, L., and Mauro, A., 1964, Radiofrequency cardiac pacemaker, Ann. N.Y. Acad. Sci. 111: 992–1006.

    Article  Google Scholar 

  • Wingard, L. B., Jr., and Liu, C. C., 1969, Development of a glucose oxidase fuel cell, Proc. 8th Int. Conf. Med. Biol. Eng., Chicago, p. 26.

    Google Scholar 

  • Wingard, L. B., Jr., Liu, C. C., and Nagda, N. L., 1971, Electrochemical measurements with glucose oxidase immobilized in polyacrylamide gel: constant current voltametry, Biotechnol. Bioeng., 13: 629.

    Article  Google Scholar 

  • Wolfson, S. K., Jr., and Yao, S. J., 1972, Implantable fuel cells: effect of added endogenous dialyzable materials, Proc. 7th Intersoc. Energy Conversion Eng. Conf., San Diego, pp. 733–739.

    Google Scholar 

  • Wolfson, S. K., Jr., Gofberg, S. L., Prusiner, P., and Nanis, L., 1968, The bioautofuel cell: a device for pacemaker power from direct energy conversion consuming autogenous fuel, Trans. Amer. Soc. Artificial Internal Organs 14: 198–203.

    Google Scholar 

  • Wolfson, S. K., Jr., Yao, S. J., Geisel, A., and Cash, H. R., Jr., 1970, A single electrolyte fuel cell utilizing permselective membranes, Trans. Amer. Soc. Artificial Internal Organs 16: 193–198.

    Google Scholar 

  • Yahiro, A. T., Lee, S. M., and Kimble, D. O., 1964, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochim. Biophys. Acta 88: 375.

    Google Scholar 

  • Yao, S. J., Appleby, A. J., Geisel, A., Cash, H. R., Jr., Wolfson, S. K., Jr., 1969, Anodic oxidation of carbohydrates and their derivatives in neutral saline solution, Nature 224: 921–922.

    Article  Google Scholar 

  • Yao, S. J., Michuda, M., Markley, F., and Wolfson, S. K., Jr., 1972, A bioautofuel cell for pacemaker power, in: From Electrocatalysis to Fuel Cells ( G. Sandstede, ed.), pp. 291–299, University of Washington Press, Seattle, Washington.

    Google Scholar 

  • Zoll, P. M., Frank, H. A., Zarsky, L. R. N., Linenthal, A.J., and Belgard, A. H., 1961, Long-term electric stimulation of the heart for Stokes-Adams diseases, Ann. Surg. 154: 330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Wolfson, S.K., Wingard, L.B., Liu, C.C., Yao, S.J. (1977). Possible Roles of Enzymes in Development of a Fuel Cell Power Source for the Cardiac Pacemaker. In: Chang, T.M.S. (eds) Biomedical Applications of Immobilized Enzymes and Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2610-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2610-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2612-0

  • Online ISBN: 978-1-4684-2610-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics